
CUE Content Store

Publication Design Guide
7.14.16-1

Table of Contents

1 Introduction.. 5

1.1 Content Items and Types...6

1.2 Containers and Content Inheritance...7

1.2.1 Auto-publishing.. 9

1.2.2 Cross-OU Inheritance..10

1.3 Workflows, States and Access Control.. 10

1.4 The Publication Resources...11

2 Defining a Publication..14

2.1 Defining Shared Resources..14

2.2 Defining Publication Resources..15

2.3 Creating a Publication.. 16

2.4 Enabling Storyline Templates...16

3 The content-type Resource... 18

3.1 About Content Types..18

3.2 Defining Story Content Types.. 19

3.2.1 Legacy Stories...20

3.2.2 Native CUE Stories... 21

3.3 Defining Media Content Types...23

3.3.1 Supported Graphics File Types...24

3.3.2 Using Graphic Content Types... 24

3.3.3 Image Metadata...25

3.4 Defining Summaries... 26

3.5 Controlling CUE Content Card Fields.. 27

3.6 Controlling Content Item URLs.. 29

3.7 More About Defining Fields..29

3.7.1 Basic Fields... 30

3.7.2 Number Fields... 30

3.7.3 Boolean Fields...31

3.7.4 Enumeration Fields..31

3.7.5 URI Fields..31

3.7.6 Link Fields... 31

3.7.7 Date Fields.. 32

3.7.8 Schedule Fields...32

3.7.9 Collection Fields.. 33

3.7.10 Field Arrays... 33

3.7.11 Complex Fields..33

3.7.12 Hidden Fields...34

3.8 Relations... 34

3.8.1 Defining Relations... 34

3.8.2 Displaying Relation Types in CUE's Main Editor Area..36

3.9 Changing Content Types That Are in Use... 37

3.9.1 Compatible Changes... 38

3.9.2 Incompatible Change...38

3.9.3 Unsupported Change.. 38

4 Shared Resources... 39

4.1 Publication Types... 39

4.2 Storyline Resources..40

4.2.1 Story Element Types...41

4.2.2 Storyline Templates...53

4.3 Container Types... 55

4.4 Custom Workflow Definitions..57

4.4.1 Example Workflow...58

4.4.2 The Workflow Definition Elements.. 60

4.4.3 Modifying Workflow Definitions... 63

4.5 Custom Search Filter Definitions..64

4.5.1 Editing a Search Filter Definition...64

4.5.2 Indexing Fields.. 65

4.6 Dashboard Definitions.. 66

4.6.1 Editing a Dashboard Definition..66

4.7 Capability Definitions.. 68

4.8 Custom Role Definitions...70

4.9 Custom Content Card Definitions...71

4.9.1 Content Card Definition Format.. 71

4.9.2 Twig Template Processing.. 71

4.9.3 Using Content Card Definitions...73

4.9.4 Controlling Content Card Thumbnail Selection... 74

5 The layout-group Resource... 75

5.1 Defining Section Page Layouts.. 75

5.1.1 Controlling Page Structure.. 75

5.1.2 Group, Area and Teaser Options..77

6 The feature Resource..79

7 The interface-hints Namespace...80

7.1 label.. 80

7.2 value-if-unset.. 80

7.3 style...81

7.3.1 Styling Rich Text Fields.. 81

7.3.2 Styling Story Element Types...81

7.4 icon... 82

7.5 macro.. 83

7.6 tag-scheme... 83

7.7 title-field...84

CUE Content Store Publication Design Guide

1 Introduction

The CUE Content Store is a platform for building large, sophisticated multi-platform publishing
operations. It provides editorial staff with a streamlined production environment in which they can
concentrate on the production, editing and publishing of content for one or more publications. A
publication, also sometimes known as a channel is a publishing endpoint or target for content. It may
be a web site, a print publication, or a social media account (Facebook, Twitter etc.).

All publications have a similar overall structure, composed of:

content items
Stories (i.e rich text documents) of various kinds, images, videos, audio files and so on. All
the content to be published in a particular channel appears as content items in that channel's
publication.

sections
Containers for content items. Sections are organized in a tree structure. All content items must
belong to a section. A content item can belong to mutiple sections but must always have one
and only one home section. This section structure typically maps on to the navigation/section
structure of the target web site, but it does not have to.

section pages
A section can have one or more section pages, only one of which can be active at any given time.
Section pages have an internal structure of containers called areas in which content items can
be placed (or desked) by editorial staff in order to enable manual curation of a web site's front
pages.

lists
A list is an ordered list of content items that can be created and edited in CUE. Lists belong to
sections and can be desked on section pages in the same way as individual content items.

inboxes
An inbox is a list of content items that can be created and edited in CUE. Inboxes belong to
sections and are mostly used as a workflow tool: they are a convenient way of organising content
and passing it between users.

tags
Tags are specially defined names that can optionally be associated with content items in order
to categorize them for search and retrieval purposes. A journalist might, for example tag a travel
article about Thailand with the tags Travel and Thailand. Tags can optionally be organized
in hierarchies, in order to be able to represent logical associations between the concepts they
represent. Bangkok, for example, might belong to Thailand, which in turn might belong to
Asia.

All CUE publications have this overall structure, which is reflected in the CUE editor. The details of a
publication's structure, however, are customer-defined:

• What types of content items are available, and the internal structure of those content types – what
fields they can contain, the type and internal structure of the fields, constraints on what the fields
may contain, and so on

• What sections are available, and the section tree structure

• The internal section page structure – what areas are available, how they are structured, and
constraints determining what may be desked in each area

Copyright © 2018-2022 Stibo DX A/S Page 5

CUE Content Store Publication Design Guide

• What lists and inboxes are available in each section of a publication

• What tags are available, and how they are organized

A publication's section tree is directly editable in the CUE editor, and is therefore under editorial
control. This is also the case for lists and inboxes. The tag structures available for use in publications
are defined using the escenic-admin web application, and the tags in them can be edited in CUE. This
manual is primarily concerned with the other two aspects of publication design: content type definition
and section page definition. It will also cover the whole process of creating a publication from scratch.

Organizational Units

Publications can be organized into groups called organizational units or OUs for short. OUs are
useful for large publishing organizations with many different publications and editorial groups. In a
large news organization, an OU will typically represent a newsroom. So in this case OUs allow you to
divide the organization's publications into groups and assign them to the responsible newsrooms. The
main advantage of doing this is that it allows CUE users to specify which OU(s) they belong to, and
thereby limit which publications they see when working in CUE.

1.1 Content Items and Types
Content items are the central objects in the CUE publicaton structure. They are generic containers for
all the kinds of content you might want on your web site: news stories; magazine articles; theater, film,
book and restaurant reviews; obituaries; interviews; stock market reports; photos; video clips; audio
files; attached documents such as PDF files - the list is very long.

In addition to holding all these different kinds of content, content items also contain additional
information about the content: metadata such as the name of the author and the article's publication
history. Content items can also contain relations to other content items. A news story, for example,
might contain relations to:

• Images to be displayed with the story

• Related news stories to be displayed as links in a "More about..." box

• A background video report to be displayed alongside the story.

Moreover, content items have an internal structure that varies according to content type, and different
organizations can have very different requirements with regard to content item structure. For this
reason, content items are customer-definable objects. All the content types required in a particular
CUE installation are specified in a content type definition file called the content-type resource.

The content-type resource defines and names all the content types available to the Content Store,
and for each content type it specifies:

• A set of fields. All the information in a content item is stored in fields. A text content item
(generally referred to as a story in this manual) will usually have at least a body field for the main
content and a title field (although different names may be used) plus a range of other fields that
vary according to the content type.

• Optionally, a set of relation types. A relation type is simply a name used to classify an article's
relations to other objects (other articles, images, multimedia objects, external links and so on). For
further information about relation types, see section 3.8.

Copyright © 2018-2022 Stibo DX A/S Page 6

CUE Content Store Publication Design Guide

Since it defines the structure of all the articles in a CUE installation, the content-type resource is
obviously of central importance. It determines:

• What is stored in the database

• What is displayed in the CUE Editor user interface

• What is made available to template developers in the CUE Front GraphQL API

For further information about this, see chapter 3.

Alongside the content-type resource files is another important resource file called the layout-group
resource. This resource defines the internal structure of section pages. For further information about
the layout-group resource, see chapter 5.

The content-type and layout-group resources are publication-specific: if your organization
publishes multiple web sites, then each site will be defined as a separate publication, and each
publication will have its own content-type and layout-group resources. All the publications can,
however, also make use of a collection of shared resources called storyline templates and story
element types.

Story element types define the block level elements of which stories are composed – elements such as
headline, lead text, paragraph, image, pull quote and so on. Each element type is defined in a separate
resource (story-element-headline, for example).

Storyline templates define different sets of story elements for use in different contexts (different
publications, different types of story and so on).

1.2 Containers and Content Inheritance
Different channels in general require very different types of content. Links, video and audio content
can be an important part of online content, but are largely irrelevant for a print publication. A social
media post is likely to be much shorter than either a web site or print story. Nevertheless, some
content can be shared between different channels, and for most publishers it makes sense to manage a
story that is to be published to many channels as a single task. CUE Content Store therefore supports
single-sourcing of content for publishing to multiple channels.

Single-sourcing is provided by means of content inheritance: a content item in one channel is
allowed to inherit its content from another content item in a different channel. In a typical online-
first setup, content is initially added to a base content item in the online publication, and then
inherited by variant content items in print and social media publications (and possibly in other online
publications). In a print-first setup, content would first be added to a print publication and then
inherited by variant content items in other publications.

Content inheritance depends on the use of storyline templates and story elements, and content is
inherited at the story element level. Not all of a base content item's story elements are necessarily
inherited by the variants – a Twitter content item is usually very short and may only inherit one or two
story elements.

Within any one organizational unit (OU), only one level of inheritance is possible: a print variant and
a facebook variant can both inherit directly from an online base storyline, but it is not possible for
the print variant to inherit from the online base storyline, and the facebook variant to inherit from the
print variant.

Copyright © 2018-2022 Stibo DX A/S Page 7

CUE Content Store Publication Design Guide

Multilevel inheritance is nevertheless possible, but only across OU boundaries. If a storyline inherits
from a base storyline in another OU, then it can be used as a local base storyline within its own OU. So
if a print storyline inherits from an online storyline in another OU, it is possible to then add a facebook
storyline that inherits from the print storyline. The following diagram shows a container that spans
three OUs:

The variants in each OU all inherit directly from a local base storyline in their own OU, but ultimately
all of the storylines inherit from the global base storyline in OU 1.

The terms upstream and downstream are sometimes used to describe inheritance relationships
between storylines. An upstream storyline is one of the storylines from which the current storyline
inherits content. A downstream storyline is one of the storylines that inherit from the current storyline.

CUE supports two different styles of inheritance, called inheritance modes:

Inherit mode
Inherit mode inheritance is the simplest type of inheritance. In this mode, inherited content is
not editable: only the base storyline can be edited, and any changes made to the storyline are
immediately reflected in all its variants. A user can, however, edit a variant by first breaking its
inheritance link to the base. Its content will then no longer reflect any changes made to the base
storyline.

Reconcile mode
In reconcile mode, inheritance is controlled at the story element level rather than at the storyline
level. Adding a new story element to a variant storyline, for example, will not affect the other
story elements inherited from the base; they will continue to reflect changes made in the base
storyline. Similarly, editing or deleting an inherited story element will only break inheritance for
that story element: all the other inherited story elements will continue to reflect changes made
in the base storyline.

Inherit mode was impemented before reconcile mode, and in order to ensure backwards compatibility
inherit mode is the Content Store's default mode of inheritance. Reconcile mode, however, offers
greater flexibility and is the recommended choice for new publications.

The following concepts are required to provide support for multi-channel publishing:

Publication type
All publications are classified as belonging to a publication type. Like content types,
publication types are user-definable. Publication types are much simpler than content types,
but they are also defined in XML resources: for details, see section 4.1. Aside from defining the
publication type's name and icon, a publication type resource simply lets you enable/disable a
few publication features such as support for lists, inboxes and section 1.2.1. Default publication
type resources for online, print, Facebook and Twitter channels are included in the Content
Store starter pack.

Container
A container holds all the content items comprising a particular story: the base content item to
which the original content was added, and the variant content items that inherit the content. A
container is identified by its slug: a working title assigned to it when it is first created, usually
copied from the title or headline of the container's base content item. The slug follows all
variants of the story.

Copyright © 2018-2022 Stibo DX A/S Page 8

CUE Content Store Publication Design Guide

Container type
Container types determine what kinds of container it is possible to create. Like content types
and publication types, container types are defined in XML resources: for details, see section 4.3.
Like a publication type, a container type defines a name and icon, but it also contains:

• An inheritance-mode attribute that determines the type of inheritance to be used in the
container: inherit mode or reconcile mode inheritance. For example:

inheritance-mode="reconcile"

If inheritance-mode is not set, then the container uses inherit mode by default.

A set of zero or more field definitions. Any fields that are defined in a container type will
appear on a special tab in all content items belonging to containers of that type. Most
containers have only one such field definition - the container slug.

• A set of one or more usage rules for containers of this type. Each rule consists of a
publication name and a content type name. For example:

<first-destination publication="tomorrow-online" content-type="story"/>

The usage rules determine:

In what contexts containers of a given type can be created:
A container type will only appear in the CUE Create New dialog if at least one of its
first-destination elements specifies a publication in which the user has content
creation rights and which belongs to an OU that is visible to the user.

The content type of a new container's base content item:
When a new container is created, its base content type is taken from the first first-
destination element that specifies a publication in which the user has content
creation rights and which belongs to an OU that is visible to the user.

Once a base content item has been created, the CUE user can spawn variants from it. A variant created
in this way must:

• Be a storyline-based content type.

• Only have one allowed storyline-template.

A variant can belong to a different OU from its base – it then becomes a local base from which other
variants can be spawned.

The Content Store links variant story elements to base story elements in accordance with built-in
rules. Instances of any story element types in the variant's storyline template with names that match
story elements in the base storyline are created and linked to the matching base story elements. If the
variant's storyline template contains required story element types that have no matches in the base
storyline, then empty instances are created in the variant.

A variant storyline can be converted to a base storyline, in which case the original base is converted to
a variant. This is only possible within a single OU, however - which effectively means that local base
storylines cannot be converted to global base storylines.

1.2.1 Auto-publishing

Auto-publishing is a publication feature that automatically republishes variant content items whenever
an upstream change is published. With auto-publishing enabled, updating and publishing a base
content item can trigger a cascade of publish events in all its inheriting variants.

Copyright © 2018-2022 Stibo DX A/S Page 9

CUE Content Store Publication Design Guide

The auto-publishing feature only works in very tightly defined circumstances, in order to ensure that
it cannot result in the unintentional publishing of content. A content item can only be automatically
published if the following conditions are satisfied:

• Auto-publishing is enabled in the publication.

• The content item is a storyline content item.

• The content item is defined as a destination in a container and has inheritance-mode set to
reconcile.

• The content item has already been published (auto-publishing is in fact auto-republishing).

• The content item is either in the state published or a staged state such as draft-published.

• If the content item is in a staged state such as draft-published, then all the changes made to
the content item since the last time it was published must be inherited changes. If it contains any
changes that were made directly in the content item itself, then it will not be auto-published. (This
rule can alternatively be made even more restrictive, see below).

Auto-publishing can be enabled either for all publications of a particular type, by setting the auto-
publish-storylines feature in a publication-type resource (see auto-publish-storylines). It can
also be set for an individual publication by setting the autoPublishStorylines property in a
publication's feature resource (see auto-publish-storylines).

The auto-publishing feature can either be disabled or set to one of two levels:

cautious (default)
If a destination content item has ever been manually modified and republished since it was first
published, then it will never be auto-published.

full
A destination content item will be auto-published unless it is in a staged state such as draft-
published and the changes it contains include any changes that were made directly in
the content item itself. In other words it will be auto-published as long as it only contains
inherited changes.

When determining whether or not to auto-publish a content item, only changes to storyline content
are considered: changes to relations or metadata such as tags will never prevent auto-publishing.

1.2.2 Cross-OU Inheritance

CUE supports cross-OU inheritance, but only a base content type can inherit from a base content item
in a different OU. This creates a local base content item, from which variants can be spawned in the
usual way.

1.3 Workflows, States and Access Control
The progress of content through CUE is controlled by workflows. A workflow is:

• A sequence of states through which a content item passes from the point at which it is first created
to the point at which it is finally published (or possibly deleted).

• The transitions allowed between those states

Copyright © 2018-2022 Stibo DX A/S Page 10

http://docs.escenic.com/ece-resource-ref/7.14/_auto_publish_storylines.html
http://docs.escenic.com/ece-resource-ref/7.14/autopublishstorylines.html

CUE Content Store Publication Design Guide

Each state has an associated set of permissions that determine the access users have to content in that
state. Content in the draft state, for example, can usually only be transitioned to the published state by
users with the editor role.

CUE has a default workflow consisting of the following states:

Draft
The state of a newly-created content item. It remains in this state while it is being worked on by
its author(s) and is only visible to editorial staff.

Submitted
The authors are finished working on the content item and it is ready for review by others (an
editor, for example). It is still only visible to editorial staff.

Approved
The review process is completed and the content item is considered ready for publishing. It is
still only visible to editorial staff.

Published
The content item is now publicly accessible. If it is desked on an active section page then it is
visible in the web publication, and even if it is not desked on an active section page, it can be
found it by searching.

Draft (with published)
The content item is published and modified. The original version is visible on the web site and a
modified draft version is visible in CUE.

Submitted (with published)
The content item is published and modified. The original version is visible on the web site and a
modified submitted version is visible in CUE.

Approved (with published)
The content item is published and modified. The original version is visible on the web site and a
modified approved version is visible in CUE.

Deleted
The content item has been withdrawn. A deleted content item is only visible to editorial staff. A
deleted content item can be "undeleted" by changing its state from deleted to one of the other
states.

Optionally, the "with published" states can be omitted, to give a simpler workflow. In this simpler
workflow, changes to published content are immediately published. For more about this, see Disabling
Content Item Staging.

These two default workflows may be sufficient for many publications. It is, however, possible to define
your own states and workflows that you can then use to control particular content types.

Workflows, like content types are defined in resource files that must be uploaded to the Content Store
(see section 1.4). Once you have uploaded a set of workflows you can make use of them by associating
them with content type definitions in your publication content-type resource. You do this by setting
the content-type element's workflow attribute (see content-type).

1.4 The Publication Resources
The publication resources are files that define the underlying structure of a publication.

Copyright © 2018-2022 Stibo DX A/S Page 11

http://docs.escenic.com/ece-advanced-temp-dev-guide/7.14/disabling_content_item_staging.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/7.14/disabling_content_item_staging.html
http://docs.escenic.com/ece-resource-ref/7.14/ct_content_type.html

CUE Content Store Publication Design Guide

There are four publication-specific resources:

content-type
An XML file that defines the types of content items present in a publication.

layout
A legacy XML file that is required to be present but never needs to be edited.

layout-group
An XML file that defines the logical structure of the section pages in a publication.

feature
A plain text file containing property settings that govern the behavior of the CUE Content Store
when handling a publication. This resource is optional: you only need to supply it if you want to
change the default behavior of the Content Store in some way.

The publication-specific resources are stored in the following location in a publication WAR file or
folder tree:

META-INF/escenic/publication-resources/escenic

For more detailed information about publication resources and how to define them, see section 2.2.

Publications also have access to a set of shared resources:

publication types
XML files defining basic information about different types of publications: name, icon and its
support for features such as lists, inboxes and section 1.2.1.

story element types
XML files defining the block level elements of which stories are composed – elements such as
headline, lead text, paragraph, image, pull quote and so on. Each file contains the definition of
one story element type.

storyline templates
XML files defining sets of story element types from which stories may be composed. A story
is based on a storyline template, which determines what story element types it may contain.
The storyline templates made available in a publication are determined by setting section
parameters in the publication, as described in section 2.4.

container types
XML files defining different types of containers. A container holds a base content item plus
its variants: content items in different types of publications that inherit the base content item's
content.

custom workflow definitions
XML files defining custom workflows that may be associated with particular content types. A
workflow defines:

• A set of states that a content item may be in

• A set of permissions associated with each state, determining what users may do with content
items in that state

• The transitions allowed between the states in the workflow

custom role definitions
XML files defining custom roles. A role defines a set of access rights or permissions that can be
assigned to a user.

Copyright © 2018-2022 Stibo DX A/S Page 12

CUE Content Store Publication Design Guide

For more detailed information about shared resources and how to define them, see section 2.1.

Copyright © 2018-2022 Stibo DX A/S Page 13

CUE Content Store Publication Design Guide

2 Defining a Publication

The process of defining a publication involves the following steps:

1. Define a set of shared publication resources and upload them to the Content Store.

2. Define the publication resources for this publication and upload them to the Content Store.

3. Create a publication based on the uploaded resources

4. Specify the storyline templates to be made available in the publication

5. Revise the resources if necessary

This process is described in greater detail in the following sections.

2.1 Defining Shared Resources
The shared publication resources are XML files of the following type:

Publication types
that define different types of publication.

Story element types
that define block level elements such as paragraphs, images, headlines and so on.

Storyline templates
that define different types of story in terms of the story element types they can or must contain.

Container types
that define different types of containers, used for managing content inheritance.

Custom workflow definitions
that may be associated with particular content types, defining how they flow through CUE.

Custom search filter definitions
that either modify CUE's default search filter panel or define additional search filters for use in
dashboards.

Dashboard definitions
that define CUE dashboards. A dashboard is a panel in CUE that displays a set of one or more
custom searches.

Custom capability definitions
that can be used to control user access to CUE functionality.

Custom role definitions
that can be used to control user access to content.

Custom content card definitions
that can be used to define what appears on content cards in CUE.

Shared publication resources are not an absolute requirement for creating publications. You only need
story elements and storyline templates if you intend to make use of storyline stories, the new story type
introduced with the Content Store. If you only use the rich text-based stories inherited from Escenic
then you do not. For more information about the differences between storyline stories and rich text
stories, see chapter 4.

Copyright © 2018-2022 Stibo DX A/S Page 14

CUE Content Store Publication Design Guide

The recommended choice for new publications is to use native CUE storyline stories, in which case
you will need to define a set of shared resources and upload them. You might also want to create a
publication that supports both kind of story, so that you can mix existing rich text stories with new
storyline stories.

You only need publication types if you actually publish to different channels (online and print, for
example, or online and social media).

You only need container types if you use storyline stories, publish to multiple channels and wish to
make use of content inheritance between those channels.

You only need to upload custom workflow definitions if the default workflows supplied with the
Content Store do not meet your requirements. Similarly, you only need to upload custom search filter
definitions if CUE's default search functionality is insufficient or if you want to add dashboards to CUE
(in which case you need to upload dashboard definitions as well).

You only need to upload custom capability definitions if the default capability definitions supplied
with the Content Store do not meet your requirements. This may be the case if you have added web
components to CUE and wish to restrict user access to them.

You only need to upload custom role definitions if the default roles supplied with the Content Store do
not meet your requirements.

You only need to upload custom content card definitions if CUE's default content card layout does not
meet your requirements.

The Content Store installation includes a starter pack with a set of ready-to-use shared resources.
These may be a sufficient starting point for many uses, although if you use a language other than
English in your CUE user interface, then you will at least want to translate the labels in the starter pack
resource files.

You will find the starter pack in the engine-installation/contrib/starter-pack folder. If you
want to use them without modification, simply upload them to the Content Store using the escenic-
admin web application, as described in Manage Shared Resources.

If you need to translate the labels in the files first, open each file in a text editor and search for
the following two strings: <ui:label> and <ui:description>. Translate the content of these
elements and leave everything else unmodified.

If you want to make other changes to the shared resources, or create shared resources of your own,
then you will need to read chapter 4 first.

2.2 Defining Publication Resources
Whichever kind of story content type you intend to use in your publication, you will need to upload at
least three publication resource files to be able to create a publication:

• The content-type resource

• The layout resource

• The layout-group resource

Copyright © 2018-2022 Stibo DX A/S Page 15

http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html

CUE Content Store Publication Design Guide

If you have special requirements, you might also need to upload a feature resource file (see chapter 6).

You can download a default set of publication resources for the CUE Front demo publication
tomorrow-online from https://maven.escenic.com. These publication resources contain
a small number of simple content type definitions, including both a native CUE story content type
(called story) which you can use together with the default shared publication resources and an Escenic
legacy story content type.

As with the shared resources in the Content Store starter pack, you can use these publication resources
as they are. You can upload the downloaded zip file to the Content Store using the escenic-admin
web application, as described in Update Resources.

If you want to translate the labels in the content-type and layout-group resources before
uploading them, the method is basically the same as for the shared resources:

1. Unzip the publication zip file.

2. Open the content-type and layout-group resources in a text editor.

3. Search for <ui:label> and <ui:description> elements and translate their contents.

4. Save the edited files and zip them up again (together with the layout resource, which does not
need editing).

5. Upload the modified zip file to the Content Store using the escenic-admin web application, as
described in Update Resources.

If you want to make other changes to the content-type and layout-group resources, or create
your own from scratch, then you will need to read the relevant sections of this manual first (chapter 3
and chapter 5).

2.3 Creating a Publication
Once you have uploaded the required resources to the Content Store, you can use them to create a
publication. (You can, of course, also use the same set of resources to create multiple publications. The
publications will then have identical content types, relation types, layout groups and so on.)

The procedure for creating a publication is described in New publications. If you are intending to make
use of organizational units to group your publications into organizational units, then you might need to
make an organizational unit first, as described here. Once you have created a publication, you can open
it in CUE and start adding content.

2.4 Enabling Storyline Templates
If your publication is to include native CUE stories that depend on shared publication resources, then
the first thing you must do after creating the publication is open it in the CUE editor and specify which
storyline templates it is to make use of.

Copyright © 2018-2022 Stibo DX A/S Page 16

http://docs.escenic.com/ece-server-admin-guide/7.14/update_resources.html
http://docs.escenic.com/ece-server-admin-guide/7.14/update_resources.html
http://docs.escenic.com/ece-server-admin-guide/7.14/new_pubs.html
http://docs.escenic.com/ece-server-admin-guide/7.14/list_organizational_units.html

CUE Content Store Publication Design Guide

Unless you do this, the publication will not actually have access to any of the shared resources
uploaded to the Content Store, and you will not be able to create any native CUE stories in CUE – the
following error message will be displayed if you try to do so:

To enable storyline templates in a publication:

1. Open the publication in CUE.

2. Display the section tree panel.

3. Right click on the publication's root section to display its context menu.

4. Select Edit Section.

5. Select the Section Parameters tab.

6. Click the Storyline Templates field's + button and select a storyline template.

7. Repeat until you have enabled all the storyline templates you want to be available in this
publication.

8. Click Save to save your changes.

If you have created several publications based on the same set of publication resources, you must do
this in each of the publications.

Copyright © 2018-2022 Stibo DX A/S Page 17

CUE Content Store Publication Design Guide

3 The content-type Resource

The content-type resource determines (among other things):

• What kinds of content items a publication can contain

• What fields each kind of content item contains

• The type of each field

• Constraints on what you can enter in fields (maximum length, maximum and minimum values and
so on)

• How the fields will be displayed in the CUE editor

• What relations each kind of article can have

In the past, the content-type resource was always a single file, but this is no longer necessarily the
case. As well as a content-type file, you can also upload a content-type folder containing one or
more modular content type files. Each modular content type file:

• May be called anything you like.

• May contain one or more complete content type definitions.

• Must be self-contained: that is, a content type in one file cannot depend on field definitions in
another file.

When a publication is created, all uploaded content type definitions are included in the resulting
publication, whether they are defined in an old-style content-type resource or in modular content
type resource files. You must ensure that all the content type definitions uploaded to a publication
have unique names.

For instructions on how to upload content type definitions in general, see Upload Resources. For
specific instructions on how to upload modular content type definitions, see Uploading Modular
Content Type Resources.

The following sections provide an introduction to the content-type resource, and some of the things
it is used for. For a full, formal description of the content-type resource format and all the things
you can do with it, see here.

3.1 About Content Types
The primary function of the content-type XML file is to define the types of content item allowed in
a particular publication. The content item types are defined in content-type elements, which can
look something like this:

 <content-type name="file">
 <ui:label>File</ui:label>
 <ui:title-field>title</ui:title-field>
 <panel name="main">
 <field mime-type="text/plain" type="basic" name="title">
 <ui:label>Title</ui:label>
 <constraints>
 <required>true</required>

Copyright © 2018-2022 Stibo DX A/S Page 18

http://docs.escenic.com/ece-server-admin-guide/7.14/upload_resources1
http://docs.escenic.com/ece-server-admin-guide/7.14/uploading_modular_content_type_resources
http://docs.escenic.com/ece-server-admin-guide/7.14/uploading_modular_content_type_resources
http://docs.escenic.com/ece-resource-ref/7.14/content_type.html

CUE Content Store Publication Design Guide

 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="description">
 <ui:label>Description</ui:label>
 </field>
 <field name="binary" type="link">
 <ui:label>File</ui:label>
 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>application/pdf</mime-type>
 <mime-type>text/*</mime-type>
 </constraints>
 </field>
 </panel>
 <summary>
 <field name="title" type="basic" mime-type="text/plain"/>
 <field name="description" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

This defines a simple content type for representing uploaded file attachments in CUE. It has three
fields: a title, a description and a binary field used to hold an internal link to the uploaded file.
The three field definitions don't belong directly to the content type element, but to a panel called
main. Panels are used to organize content item fields into groups for display on separate tabs in CUE.
A field element must have a name attribute and a type attribute that defines what kind of data can
be store in the field. The mime-type field provides a more detailed type definition for basic fields.

The binary field's constraints element specifies what kinds of file the field supports: CUE will
only allow files of the specified types to be uploaded.

The summary element defines a set of fields intended to be used when the content item appears as
a relation in another content item or a teaser on a section page. It is usually a subset of the content
item's main fields as in the example above.

The above content type is very simple. A content type definition can contain many more fields, spread
across many panels, and the fields themselves can have complex internal structures that hold multiple
values.

3.2 Defining Story Content Types
Text-heavy content types in CUE are generally referred to as stories or articles. A story typically
consists of a long flow of formatted text stored in a single field, accompanied by other shorter text
items such as a headline, a title, a lead text plus various items of metadata and a set of relations to
other content items: images, videos, other stories and so on. CUE supports two different ways of
modelling these structures:

• Escenic legacy stories: this is the way stories were defined for the Escenic Content Engine.

• Native CUE stories: this is a newer, more flexible method of defining stories, and is the
recommended method.

You can freely choose which kind of story content type you want to use; both are fully supported. If
you have existing publications containing Escenic legacy stories, then you can continue to use them as

Copyright © 2018-2022 Stibo DX A/S Page 19

CUE Content Store Publication Design Guide

before. If you are starting from scratch then you are strongly recommended to use native CUE stories
for the following reasons:

• Greater overall flexibility (due to extensibility)

• Better structural control (the storyline templates let you, for example, specify required elements)

• Better editing experience

• Planned functionality improvements

3.2.1 Legacy Stories

In Escenic legacy stories, the main text flow (usually referred to as the story's body) is stored in a rich
text field. A rich text field is defined like this in the content-type resource:

<field type="basic" name="body" mime-type="application/xhtml+xml">
 ...
</field>

In other words, it is a basic field designed to store XHTML content. It is displayed in CUE as a rich
text editor. The rich text editor provides a toolbar for formatting content, and also allows the user to
insert simple inline relations to images and other stories. This rich text field, however, is only used to
create the main text flow of the story. Other fields are used for storing structurally important elements
such as the title/headline, lead text and byline, and most relations to other content (images, videos,
audio files, other stories) are also stored outside the rich text field.

Here is a simple legacy story content type definition:

<content-type name="story">
 <ui:icon>news</ui:icon>
 <ui:label>Story</ui:label>
 <ui:title-field>slug</ui:title-field>
 <panel name="main">
 <ui:label>Main</ui:label>
 <field mime-type="text/plain" type="basic" name="slug">
 <ui:label>Slug</ui:label>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="leadtext">
 <ui:label>Lead text</ui:label>
 </field>
 <field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:label>Body</ui:label>
 </field>
 <field mime-type="text/plain" type="basic" name="dateline">
 <ui:label>Dateline</ui:label>
 </field>
 </panel>
 <summary>
 <ui:label>Content Summary</ui:label>
 <field name="slug" type="basic" mime-type="text/plain"/>
 <field name="leadtext" type="basic" mime-type="text/plain"/>
 <field name="dateline" type="basic" mime-type="text/plain"/>
 </summary>
</content-type>

Copyright © 2018-2022 Stibo DX A/S Page 20

CUE Content Store Publication Design Guide

For more information about how to define legacy rich text fields, see section 3.7.1.

3.2.2 Native CUE Stories

In native CUE stories, the rich text field is replaced by a storyline editor, which is defined like this in
the content-type resource:

<field name="storyline" type="link">
 <relation>com.escenic.storyline</relation>
 <constraints>
 <mime-type>application/vnd.escenic.storyline+json</mime-type>
 </constraints>
</field>

The storyline field must be a link field (type=link) and must have:

• A child relation element with the content com.escenic.storyline

• A child constraints element that limits the content of the relation to the MIME type
application/vnd.escenic.storyline+json

A storyline editor differs from the legacy rich text editor in the following ways:

• It does not conform to a generic predefined document format such as XHMTL. Instead, it offers
a customizable set of styles defined in resource files called story element types and storyline
templates.

• Because the document structure is extensible, it can include story elements for holding headlines,
lead texts, bylines, images, videos, related stories. In other words, many things which have to be
stored in separate fields in Escenic legacy stories can be included in the main flow of native CUE
stories. It is still possible to make use of separate fields and relations where appropriate, but much
more can now easily be included in the main flow of a story.

Here is a content type definition for a native CUE story:

<content-type name="story">
 <ui:icon>news</ui:icon>
 <ui:label>Story</ui:label>
 <ui:title-field>slug</ui:title-field>
 <panel name="main">
 <ui:label>Main</ui:label>
 <field name="storyline" type="link">
 <relation>com.escenic.storyline</relation>
 <ui:label>Storyline</ui:label>
 <constraints>
 <mime-type>application/vnd.escenic.storyline+json</mime-type>
 </constraints>
 </field>
 </panel>
 <panel name="metadata">
 <ui:label>Metadata</ui:label>
 <field mime-type="text/plain" type="basic" name="slug">
 <ui:label>Slug</ui:label>
 <ui:description>The working title of the story</ui:description>
 <constraints>
 <required>true</required>
 </constraints>
 </field>

Copyright © 2018-2022 Stibo DX A/S Page 21

CUE Content Store Publication Design Guide

 </panel>
</content-type>

The storyline field appears in the content type's first panel, and it is the only field in the panel. This
ensures that the storyline editor is displayed by default when a content item is opened, and that it
has the maximum amount of screen space available, since the tab it is displayed on contains no other
fields.

This content type has fewer field definitions than the legacy story definition shown in section 3.2.1. The
leadtext and dateline fields are no longer required because they can be defined as story elements
inside the storyline field. The slug field, however, is retained as a separate field because it is used by
CUE as a "working title" for the story. As in any other content type, The slug field must be a plain text
field, and must be referenced by a ui:title-field element. It must also be defined as a required
field.

Even though the slug field is required, the CUE user will rarely need to edit it in a native CUE story:
when the story is saved for the first time, the content of one of the elements in the storyline field is
copied into the slug field, which then becomes the story's working title. The story element used to fill
the slug field is selected as follows:

• If available, the first non-empty element in the storyline that has a ui:title-field element in
its story element type (see section 4.2.1)

• Otherwise, the first non-empty element in the storyline.

The typical case is that there is a headline story element type that has a ui:title-field, and that
this is a required element in the storyline, with the result that the slug field gets its content from the
headline.

If the source story element is subsequently changed, the change is not copied over to the slug field, so
the slug remains the same throughout the life of the story. A newly-created story cannot be saved until
either the first element in the storyline field or the slug field itself has some content.

When a story content item is created in CUE, the user is immediately prompted to select a storyline
template:

The content item is then created and the storyline field is populated with all the required and default
element types specified in the selected template, ready for editing.

3.2.2.1 Container and Inheritance Support

The Content Store supports single-source publishing to multiple channels by means of containers:
objects that hold links to multiple CUE-native stories. For more about this, see section 1.2.

CUE-native content types intended for use in containers must be configured slightly differently from
CUE-native content types intended for standalone use. The differences are:

Copyright © 2018-2022 Stibo DX A/S Page 22

CUE Content Store Publication Design Guide

The slug belongs to the container
This means the content type does not need a slug field or a ui:title-field element. These
are configured in the container type instead (see section 4.3). A value for the slug field is selected
from a story element in the container's base content item, in the same way as for a standalone
content item.

The content type must allow only one storyline template
The constraints on the content type's storyline field must include an allow-storyline-
templates element that contains one and one only ref-storyline-template, as shown in
bold below:

<field name="storyline" type="link">
 <relation>com.escenic.storyline</relation>
 <ui:label>Storyline</ui:label>
 <constraints>
 <mime-type>application/vnd.escenic.storyline+json</mime-type>
 <allow-storyline-templates>
 <ref-storyline-template name="strict"/>
 </allow-storyline-templates>
 </constraints>
</field>

A content type that does not include this constraint on its storyline field will never be used by
CUE when creating a container. This is intended to improve the usability of containers in CUE:
once the user has selected the base content type for the container he is creating, the container
and content item are created immediately – the user is not required to select a storyline
template as well.

3.3 Defining Media Content Types
Content types are not only used to define stories. A publication will usually also include content type
definitions for a variety of media types: images, videos, audio tracks, documents such as Word files and
PDFs and so on. A media content type must have at least two fields:

• One link field (type=link)

• One slug field

The link field in this case is used to hold a link to the media file. The link field must have:

• A child relation element with the content com.escenic.edit-media

• A child constraints element that limits the content of the relation to the appropriate MIME
types. So for an image content type, this would typically be:

<constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 <mime-type>image/gif</mime-type>
</constraints>

or for a video content type:

<constraints>
 <mime-type>video/*</mime-type>
 <mime-type>application/x-troff-msvideo</mime-type>
 <mime-type>application/mxf</mime-type>

Copyright © 2018-2022 Stibo DX A/S Page 23

CUE Content Store Publication Design Guide

</constraints>

and so on.

As with story content types, media content types may also contain many other fields, grouped into
different panels. An image content type, for example, usually contains a crop panel, with a field that
can be used to set up alternative image versions called representations.

3.3.1 Supported Graphics File Types

CUE can display the following graphic file types:

image/jpeg
image/png
image/gif
image/svg+xml

As long as they are loaded as binary objects in correctly configured content types, files of these types
will be displayed as images in CUE.

You can, however, make it possible for CUE to display previews of additional graphic file types
by installing and configuring CUE Graphics Converter. CUE Graphics Converter is a service for
converting uploaded graphics files to formats that can be displayed by CUE. It uses the Changelog
Daemon to monitor the Content Store, watching for the addition of graphics files in specified formats.
When a graphics file in one of these formats is added to the Content Store, the CUE Graphics
Converter:

• Converts the file to a format that CUE can display (JPEG, for example)

• Loads the converted graphics file to the Content Store as a variant of the original file

Whenever the content item containing this graphics file is loaded to CUE, CUE will display the variant
instead of the original file. The original file is still present in the content item, however, and will be
passed unchanged to CUE Front for handling by front-end applications.

By default the CUE Graphics Converter is configured to support the following additional file formats:

image/vnd.adobe.photoshop
application/pdf
application/postscript

by creating JPEG variants for them. You can, however, configure it to support additional formats if
required.

3.3.2 Using Graphic Content Types

It can in many cases make sense to define more than one graphic content type in order to enforce
different workflows for different kinds of graphics. It is typically the case that you want the option
of using different versions of photos in different contexts, and CUE provides a crop mechanism to
support this need. Other kinds of graphic files such as diagrams, maps and infographics are probably
only meaningful when displayed in full. It then makes sense to have two different graphic content
types, one of which does not provide any crop functionality.

Copyright © 2018-2022 Stibo DX A/S Page 24

http://docs.escenic.com/ece-resource-ref/7.14/rep_representation.html
cue-graphics-changelog-service.html
http://docs.escenic.com/changelog.html
http://docs.escenic.com/changelog.html

CUE Content Store Publication Design Guide

The "Tomorrow Online" demo publication has two graphic content types that illustrate this division:
picture is intended for photos and is configured to provide crop functionality, while graphic is
intended for diagrams, infographics and so on, and does not offer any crop functionality.

3.3.3 Image Metadata

When a JPEG image file containing embedded IPTC metadata is added to a content item,
the metadata can be automatically extracted and copied to fields in the content item. In
order to enable this feature, you have to set a Content Store configuration property by
adding the following line to configuration-root/com/escenic/storage/metadata/
MetadataInjectionTransactionFilter.properties in one of your configuration layers:

serviceEnabled=true

For general information about how to set Content Store configuration properties, see Configuring The
Content Store.

Once metadata extraction is enabled, the Content Store copies the metadata as follows by default:

Extract from IPTC field Insert into content item field

Caption/Abstract caption

By-line byline

Credit credit

Object Name title

In addition, metadata will be copied to any content item field with a name that exactly matches the
name of an IPTC field.

If the target content item does not have a field with one of the above names, then that field is not
copied. You can, however, override the default behavior by adding parameter elements to the field
definitions in an image content type. For example:

<content-type name="mypicture">
 ...
 <field mime-type="text/plain" type="basic" name="title">
 <parameter name="com.escenic.metadata" value="Headline"/>
 </field>
 <field mime-type="text/plain" type="basic" name="description">
 <parameter name="com.escenic.metadata" value="Caption/Abstract"/>
 </field>
 ...
</content-type>

The above example will copy the the content of the IPTC Headline field into the content item title
field, instead of the content of the IPTC Object Name field. It will also copy the content of the IPTC
Caption/Abstract field into the content item description field.

The parameter element must appear as the child of the target field definition, which must
be a basic field with the MIME type text/plain. The name attribute must always be set to
com.escenic.metadata and the value attribute must be set to the name of the source IPTC field.

Copyright © 2018-2022 Stibo DX A/S Page 25

http://docs.escenic.com/ece-server-admin-guide/7.14/configuring_the_content_engine.html
http://docs.escenic.com/ece-server-admin-guide/7.14/configuring_the_content_engine.html

CUE Content Store Publication Design Guide

Should you have image metadata handling requirements that cannot be met by this functionality, you
can write your own plug-in using the Java AP described in Metadata Extraction.

3.4 Defining Summaries
A summary is a subset of the fields or storyline elements in a content item. Summaries are used as
teasers for content items desked on section pages or dragged in as relations to other content items.
(Whether or not they are in fact used in this way depends, however, upon your presentation layer
application.)

Summaries are defined by including a summary element in the content type definition.

The summary element must contain one or more field elements.

For legacy stories and media content types, these elements are usually references to fields that are
already defined in the main part of the content type, for example:

 <content-type name="file">
 <ui:label>File</ui:label>
 <ui:title-field>title</ui:title-field>
 <panel name="main">
 <field mime-type="text/plain" type="basic" name="title">
 <ui:label>Title</ui:label>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="description">
 <ui:label>Description</ui:label>
 </field>
 <field name="binary" type="link">
 <ui:label>File</ui:label>
 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>application/pdf</mime-type>
 <mime-type>text/*</mime-type>
 </constraints>
 </field>
 </panel>
 <summary>
 <field name="title" type="basic" mime-type="text/plain"/>
 <field name="description" type="basic" mime-type="text/plain"/>
 </summary>
 </content-type>

For native CUE stories, the summary's field elements usually refer to storyline elements instead of
fields:

<content-type name="story">
 <ui:icon>news</ui:icon>
 <ui:label>Story</ui:label>
 <ui:title-field>slug</ui:title-field>
 <panel name="main">
 <ui:label>Main</ui:label>
 <field name="storyline" type="link">
 <relation>com.escenic.storyline</relation>

Copyright © 2018-2022 Stibo DX A/S Page 26

http://docs.escenic.com/ece-advanced-temp-dev-guide/7.14/metadata_extraction.html

CUE Content Store Publication Design Guide

 <ui:label>Storyline</ui:label>
 <constraints>
 <mime-type>application/vnd.escenic.storyline+json</mime-type>
 </constraints>
 </field>
 </panel>
 <panel name="metadata">
 <ui:label>Metadata</ui:label>
 <field mime-type="text/plain" type="basic" name="slug">
 <ui:label>Slug</ui:label>
 <ui:description>The working title of the story</ui:description>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 </panel>
 <summary>
 <field name="headline" type="basic" mime-type="text/plain"/>
 <field name="leadtext" type="basic" mime-type="text/plain"/>
 </summary>
</content-type>

When a content item is desked on a section page or added to another content item as a relation in
CUE, the content of the referenced field or storyline element is copied into the summary field as
default content. The CUE user can, however, edit this default content. This makes it possible for
summary fields to have different content to their source fields/storyline elements, and also for content
item that appear in multiple locations in a publication to have different summary fields in each
location.

A summary field does not have to reference an existing field or storyline element. If it doesn't, then
when the content item is added to a section page or related to another content item, the field is blank
by default.

Note that:

• You cannot use ref-field-group inside summary elements: you must directly specify the
fields to be included in the summary.

• You cannot use rich text fields (that is, basic fields with the MIME type application/xhtml
+xml) in summaries.

• A storyline may contain more than one instance of the storyline element referenced by a
summary field. In this case, the first instance is used.

• Any annotations in the content of a storyline element are removed when the content is copied to
a summary field.

3.5 Controlling CUE Content Card Fields
CUE uses content cards to represent content items in the user interface. Search results, for example,
are displayed as a list of content cards. A content card consists of three fields: a title, a summary and a
binary. The fields are filled as follows:

Copyright © 2018-2022 Stibo DX A/S Page 27

CUE Content Store Publication Design Guide

Title
For legacy stories and media content types, the content card title is taken from the content
type field referenced by the ui:title-field element. For native CUE stories it is taken
from the first storyline element containing a ui:title-field element. If there is no such
storyline element, then it is taken from the content type field referenced by the ui:title-
field element.

Summary
For legacy stories and media content types, the content card summary is taken from the content
type fields referenced by the com.escenic.index.summary.fields parameter. For native
CUE stories it is taken from the first storyline element containing a ui:summary-field
element. If there is no such storyline element, then it is taken from the content type fields
referenced by the com.escenic.index.summary.fields parameter.

Binary
For legacy stories and media content types, the content card binary is taken from the first
related binary content item. For native CUE stories it is taken from the first storyline element
containing a link field that references a binary content item. If there is no such storyline
element, then it is taken from the first related binary content item.

This means that for legacy stories and media content types, you can control the content of the content
card title and summary by adding a ui:title-field element and a parameter element to the
content type definition, for example:

<content-type name="story">
 ...
 <ui:title-field>title</ui:title-field>
 <parameter name="com.escenic.index.summary.fields" value="leadtext"/>
 ..
</content-type>

You can use the same method for native CUE stories, but you also have the option of marking specific
storyline elements to be used as the title or the summary. For example:

<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
 ...
 <ui:title-field />
 ...
</story-element-type>

or

<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="leadtext">
 ...
 <ui:summary-field />
 ...
</story-element-type>

If you do this, then it will take precedence over anything specified in the content-type definition.

Copyright © 2018-2022 Stibo DX A/S Page 28

CUE Content Store Publication Design Guide

3.6 Controlling Content Item URLs
By default, the URL assigned to a published content item is generated from the content item's id,
prefixed by the string article and followed by the suffix .ece - for example:

article1234.ece

You can, however, replace these with more informative (or "pretty") URLs by adding url elements to
your publication's content-type elements. This element allows you to specify a template from which
more meaningful or "pretty" URLs are generated. The template is composed from any text you want,
plus a set of standard place-holders representing parts of a content item's publication date ({dd},
{MM}, {YY}), the content of selected content item fields (typically the title field) and so on.

The url element must be specified as the child of a content-type element, and determines the
URLs assigned to content items of thahrt type. It affects:

• Newly-created content items belonging to its parent content-type.

• Any existing content items belonging to its parent content-type that are updated after the
addition of the url element. The original URL of an updated content item is retained as an
alternative URL, and attempts to access the original URL are redirected to the new URL (the
Content Store returns an HTTP 301 Moved Permanently response).

For detailed information and examples, see here.

3.7 More About Defining Fields
The content-type element you will use most frequently is almost certainly the field element. It is
also one of the more complicated elements in the content-type resource, so it is probably worth looking
at it more closely.

The field element has a type attribute that determines what type of data the field will accept. The
main type values are:

basic
Accepts any string data, including XHTML fragments. This is the default field type.

number
Accepts only numbers.

boolean
Accepts only Boolean (true/false) values.

enumeration
Accepts only values from a predefined list.

uri
Accepts only URIs.

date
Accepts only date/time values.

schedule
Accepts only schedule definitions.

Copyright © 2018-2022 Stibo DX A/S Page 29

http://docs.escenic.com/ece-resource-ref/7.14/ct_url.html

CUE Content Store Publication Design Guide

collection
Accepts only values from an atom feed.

The type of a field determines not only what kind of data it is capable of accepting, but also:

• What kind of constraints can be placed on the input data

• What kind of child elements the field element may contain

• What kind of data the field returns when accessed from a template, and therefore how the field is
best accessed.

These types are described in more detail in the following sections. Also discussed are field arrays,
complex fields and hidden fields.

Changing field type for any given field that is currently in use, is not supported. The behaviour if
done is undefined.

For a complete list of all available field types, see here.

3.7.1 Basic Fields

The following field element defines a basic field with the name title:

<field mime-type="text/plain" type="basic" name="title">
 <constraints>
 <required>true</required>
 </constraints>
</field>

Note the following points:

• The name attribute may not contain spaces and must start with a letter (not a number).

• The mime-type attribute specifies more precisely the type of data allowed in the field. Currently,
the following mime-type values are supported:

text/plain (default)
Any text. A simple text editing field is displayed in CUE.

application/xhmtl+xml
XHTML. A rich text editor with a formatting toolbar is displayed in CUE.

• The optional constraints child element specifies that a value is required.

3.7.2 Number Fields

The following field element defines a number field with the name age:

<field type="number" name="age">
 <constraints>
 <minimum>18</minimum>
 <maximum>99</maximum>
 </constraints>
 <format>##</format>
</field>

Note the following points:

Copyright © 2018-2022 Stibo DX A/S Page 30

http://docs.escenic.com/ece-resource-ref/7.14/ct_field.html

CUE Content Store Publication Design Guide

• The optional constraints child element specifies the allowed value range for the field.

• The optional format child element controls formatting in the input field in CUE. format syntax
is based on the Java DecimalFormat class. See https://docs.oracle.com/javase/8/docs/api/java/
text/DecimalFormat.html for details.

3.7.3 Boolean Fields

The following field element defines a boolean field with the name debug:

<field type="boolean" name="debug"/>

Note the following points:

• A boolean field is displayed as a checkbox in CUE.

• It can contain only two values, true (checked) or false (not checked).

3.7.4 Enumeration Fields

The following field element defines an enumeration field with the name review-type:

<field type="enumeration" name="review-type">
 <enumeration value="film"/>
 <enumeration value="play"/>
 <enumeration value="book"/>
 <enumeration value="game"/>
</field>

Note the following points:

• in CUE an enumeration field is displayed either as a drop-down list from which the user can
make a single selection or as multi-select list from which the user can make multiple selections.

• The example above displays a drop-down list. To display a multi-select list you must add a
multiple="true" attribute to the field element.

3.7.5 URI Fields

The following field element defines a uri field with the name homepage:

<field type="uri" name="homepage"/>

A uri field will only accept a valid URI (Uniform Resource Identifier) as input in CUE. URI syntax
is defined in the IETF's RFC 2396 (http://www.ietf.org/rfc/rfc2396.txt) and RFC 2732 (http://
www.ietf.org/rfc/rfc2732.txt).

3.7.6 Link Fields

Link fields are used to contain references to:

• Binary objects such as images, video and audio files and so on.

• Storyline objects.

The following element defines a link field in an image content type:

Copyright © 2018-2022 Stibo DX A/S Page 31

https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
https://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html
http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2732.txt
http://www.ietf.org/rfc/rfc2732.txt

CUE Content Store Publication Design Guide

<field name="binary" type="link">
 <relation>com.escenic.edit-media</relation>
 <constraints>
 <mime-type>image/jpeg</mime-type>
 <mime-type>image/png</mime-type>
 </constraints>
</field>

Note the following points:

• The child relation element defines the relationship between the field and the objects it used to
reference. In this case, the value com.escenic.edit-media indicates that the field is to be used
to reference binary media objects.

• The child constraints element lists the types of media objects the field is allowed to reference (in
this case, JPEG and PNG image files)

This is a storyline link field definition:

<field name="storyline" type="link">
 <relation>com.escenic.storyline</relation>
 <constraints>
 <mime-type>application/vnd.escenic.storyline+json</mime-type>
 </constraints>
</field>

In this case the child relation element contains the value com.escenic.storyline,
indicating that the field is to reference a storyline object, and the constraints element specifies a
corresponding MIME type used to identify CUE storylines.

3.7.7 Date Fields

The following field element defines a date field with the name startdate:

<field type="date" name="startdate"/>

A date field is displayed in CUE as two specialized fields, one for the date and one for
time of day. The content of a date field is stored as a UTC time in ISO-8601 format (that is,
YYYY-MM-DD'T'HH:mm:ss'Z') and is indexed as a date.

3.7.8 Schedule Fields

A schedule field is a specialized date/time field that contains a schedule start and end date, an event
start and end time and an optional set of recurrence rules. Together, they define a sequence of date/
time values. Schedule fields are typically used in articles describing events such as concerts, meetings
etc.

A schedule field is defined as follows:

<field name="when" type="schedule">
 <ui:label>Schedule</ui:label>
</field>

A schedule is defined by:

• A schedule start date

Copyright © 2018-2022 Stibo DX A/S Page 32

CUE Content Store Publication Design Guide

• Either a schedule end date or a specified number of occurrences

• An event start and end time

• A recurrence specification (daily, weekly on Fridays, etc.)

When a content item containing a schedule field is stored, all of the event occurrences defined by the
schedule are indexed, and can be searched by their start date. You can search for a list of content items
contain scheduled events that start within a certain start date range.

You can limit the maximum number of occurrences users are allowed to specify by setting the
maxOccurrences property in /com/escenic/schedule/OccurrenceHelper.properties file
in one of you installation's configuration layers. If you do not specify this, then a default occurrence
limit of 100 is used. For information about configuration layers, see Configuring The Content Engine.

3.7.9 Collection Fields

A collection field is special field that can contain value from an atom feed.

A collection field is defined as follows:

<field name="collection" type="collection" mime-type="text/plain" src="http://j.mp/
cwaXJM" select="title">
 <ui:label>Collection</ui:label>
</field>

3.7.10 Field Arrays

The following field element defines an array of basic fields with the name cities:

<field type="basic" name="cities">
 <array default="3" max="10"/>
</field>

Note the following points:

• You can make arrays of any field type.

• The array element's default attribute specifies the number of fields that are displayed by
default, and max specifies the maximum number of fields that can be displayed.

3.7.11 Complex Fields

A complex field is an array of related fields that are displayed as a group in CUE. The
component fields can be of any type except complex.

The following code defines a complex field with the name details:

<field type="complex" name="details">
 <complex>
 <field type="basic" name="availability"/>
 <field type="basic" name="colors"/>
 <field type="number" name="price"/>
 </complex>
</field>

You can create arrays of complex fields.

Copyright © 2018-2022 Stibo DX A/S Page 33

http://docs.escenic.com/ece-server-admin-guide/7.14/configuring_the_content_engine.html

CUE Content Store Publication Design Guide

3.7.12 Hidden Fields

Any field can be hidden by adding a ui:hidden element to it.

The following field element defines a hidden field with the name result:

<field type="basic" name="result">
 <ui:hidden/>
</field>

Note the following points:

• A hidden field is not displayed in CUE.

• Hidden fields are intended to be filled by application code.

3.8 Relations
A content item can be related to a number of other content items. A story, for example, might have
relations to:

• Images to be displayed with the article

• An image to be displayed with the article summary on section pages

• Other articles on the same subject, to be displayed as a list of links

• Related media objects, such as audio and video files

• Links to resources such as external web pages

Relations can be handled in two different ways in CUE:

• As structured relations defined in the content-type resource using the relation-type element.

• As inline relations in stories, where related content items are dropped directly in the text flow of a
story. In-line relations are supported by both legacy stories based on rich text fields and native CUE
stories based on story element types and storyline templates.

This section covers the use of structured relations based on use of the relation-type element.
Structured relations may be used less in new publications that make use of native CUE stories, since
you can use story element types to define richly structured relation story elements. It is nevertheless
expected that the relation-type element will continue to be used for some kinds of relations.

3.8.1 Defining Relations

The Content Store's relation concept allows related items to be managed in an organized and
standardized way.

Relations are added to content type definitions by first defining a relation-type-group (as a child
of the root content-types element):

<relation-type-group name="attachments">
 <relation-type name="pictures">
 <ui:label>Pictures</ui:label>
 </relation-type>
 <relation-type name="stories">

Copyright © 2018-2022 Stibo DX A/S Page 34

CUE Content Store Publication Design Guide

 <ui:label>Stories</ui:label>
 </relation-type>
</relation-type-group>

The relation-type-group element contains a list of one or more relation-type elements. This
group of relation types can then be included in content type definitions by adding ref-relation-
group elements to content-type elements. For example:

<content-type name="legacy-story">
 ...
 <ref-relation-type-group name="attachments"/>
 ...
</content-type>

This would add the relation types images and stories to the content type legacy-story. You can
define as many relation-type-groups as you wish in a content-type resource, and you can re-
use the same relation-type-group in many content type definitions if you wish.

3.8.1.1 Constraining Relations

Relation types are displayed as drop zones in editor metadata panels in CUE. Dropping a content item
into a relation drop zone in another content item creates a relationship between them. You can restrict
what types of content item may be dropped in a particular relation type by specifying allowed content
types as follows:

<relation-type-group name="attachments">
 <relation-type name="pictures">
 <ui:label>Pictures</ui:label>
 <allow-content-types>
 <ref-content-type name="picture"/>
 </allow-content-types>
 </relation-type>
 <relation-type name="stories">
 <ui:label>Stories</ui:label>
 <allow-content-types>
 <ref-content-type name="story"/>
 <ref-content-type name="legacy-story"/>
 </allow-content-types>.
 </relation-type>
</relation-type-group>

3.8.1.2 Customizing Relation Asset Picker Filters

You don't have to drag and drop a content item into a relation drop zone to create a relation in CUE,
you can also do it by clicking on the drop zone's + button and then selecting the content item to add
using the displayed asset picker dialog. The asset picker dialog is a standard CUE dialog for selecting
content items, containing a search field and result list. The asset picker also has a filter button, that
displays a pop-out filter panel containing various filters that you can use to narrow down the list of
results.

By default all asset pickers have the same standard filter panel. You can, however, replace this
standard filter panel with a custom set of filters. You might, for example, want to have different filters
available when selecting pictures. You would then need to define a custom filter panel as described in
section 4.5, and use a ui:search-filter-name element to add it to your relation type definition:

 <relation-type name="pictures">

Copyright © 2018-2022 Stibo DX A/S Page 35

CUE Content Store Publication Design Guide

 <ui:search-filter-name>my-picture-search-filter</ui:search-filter-name>
 <ui:label>Pictures</ui:label>
 <allow-content-types>
 <ref-content-type name="picture"/>
 </allow-content-types>
 </relation-type>

3.8.2 Displaying Relation Types in CUE's Main Editor Area

Relation types are by default displayed as drop zones in a CUE editor's metadata panel. In some cases,
however, you may prefer to display the drop zones in the main editor. There is more space available
in the main editor (useful for image and video relations), and it also increases the prominence of the
relations. You can achieve this as follows:

• Add a ui:editor-style element to the relation-type definition, with a value of either
relation-gallery or gallery.

• Use a ui:ref-relation-type element to specify where you want the relation-type to
appear (that is, on which panel, and where).

Assume, for example, that you have a relation type group defined like this:

<relation-type-group name=“attachments”>
 <relation-type name=“related-videos”>
 <allow-content-types>
 <ref-content-type name=“video”/>
 </allow-content-types>
 </relation-type>
 <relation-type name="related-stories">
 <allow-content-types>
 <ref-content-type name="story"/>
 </allow-content-types>
 </relation-type>
</relation-type-group>

The relation-type-group can then be included in a content type definition in the usual way by
adding ref-relation-group elements to content-type elements. For example:

<content-type name="story">
 ...
 <ref-relation-type-group name="attachments"/>
 ...
</content-type>

With this configuration, both the relations in the group will be displayed on the metadata panel in the
usual way. You can, however, move either or both of the relations to the main editor area by adding
ui:editor-style elements to the relation-type elements. The following configuration, for
example:

<relation-type-group name=“attachments”>
 <relation-type name=“related-videos”>
 <ui:editor-style>relation-gallery</ui:editor-style>
 <allow-content-types>
 <ref-content-type name=“video”/>
 </allow-content-types>
 </relation-type>
 <relation-type name="related-stories">

Copyright © 2018-2022 Stibo DX A/S Page 36

CUE Content Store Publication Design Guide

 <allow-content-types>
 <ref-content-type name="story"/>
 </allow-content-types>
 </relation-type>
</relation-type-group>

moves the related-videos relation to the main editor area but leaves the related-stories
relation in the metadata panel.

Relations that are moved to the main editor in this way are by default displayed on the content type's
first panel, after all the panel's ordinary fields. You can, however, move them to different panels and
place them exactly where you want by making use of ui:ref-relation-type elements. You simply
insert a ui:ref-relation-type element in the required location. The ui:ref-relation-type
must have a ref attribute referencing the relation you want to move. To move the related-videos
relation to the story content type's media panel, for example:

<content-type name=“story”>
 ...
 <ref-relation-type-group name="attachments"/>
 <panel name=“media”>
 ...
 <ui:ref-relation-type ref=“related-videos”>
 ...
 </panel>
 ...
</content-type>

Note that while the ref-relation-type-group is an ordinary content-type element
belonging to the http://xmlns.escenic.com/2008/content-type namespace, the ref-
relation-type element belongs to the http://xmlns.escenic.com/2008/interface-
hints namespace. That means you need to specify the namespace when you use it – either
explicitly with a ns attribute or by using a namespace prefix such as ui:.

The ui:editor-style value relation-gallery can be used for all relation types, and other than
allowing the relation type to be moved to the main editor area, does not affect how the relations are
displayed in CUE. The gallery setting, on the other hand can only be used for image relation types,
and enforces an image-specific gallery layout in CUE. These are the only differences between the two
values: the placement rules described above are the same for both settings.

3.9 Changing Content Types That Are in Use
Most changes you make to content type definitions will be made during the publication design phase
before it is in active use. Occasionally, however, you may need to update content types that are in
active use in a live system. For publications that are actively updated 24/7 there may be little or no
opportunity to stop all editing activity while the change is made.

The precise consequences of changing a content type that is in use depends on which of the following
three classes the change belongs to:

• Compatible change

• Incompatible change

• Unsupported change

Copyright © 2018-2022 Stibo DX A/S Page 37

CUE Content Store Publication Design Guide

3.9.1 Compatible Changes

A compatible change to a content type causes no problems or side effects in CUE. The following
changes are compatible changes:

• Changes to a field's ui:label.

• Changes to a field's ui:description.

Compatible changes do not necessarily become visible in CUE immediately after the changed
content-type resource is uploaded to the Content Store: they become visible the next time CUE
refreshes the affected content type for some reason or a content item of the affected type is opened for
editing.

3.9.2 Incompatible Change

All the following types of change are classed as incompatible changes:

• Adding new optional field

• Making a mandatory field optional

• Adding a new option to an enumeration field

• Removing any constraint

• Adding a new field to a complex field

If a content item is open for editing in CUE when an incompatible change is made to its content type,
then when the user saves his changes, a message is displayed stating that the content type has changed
in an incompatible way. When the user clicks OK, the change is saved in the usual way but the editor
tab is then immediately closed and reopened, incorporating the content type change. The user can then
continue editing with the content type change in effect.

3.9.3 Unsupported Change

All other types of change to content types are unsupported changes. This means CUE cannot save a
content item that is affected by such a change.

If you need to make an unsupported change to a content type, you should inform all CUE users so that
they can avoid editing content items of the affected type while the updated content-type resource is
uploaded.

Copyright © 2018-2022 Stibo DX A/S Page 38

CUE Content Store Publication Design Guide

4 Shared Resources

Shared publication resources serve the following purposes:

• Defining publication types

• Defining the story element types and storyline templates used in CUE storylines

• Defining container types

• Defining custom workflows

• Defining custom search filter panels

• Defining capabilities

• Defining custom content cards

They are described in greater detail in the following sections.

Shared resources must be uploaded to the Content Store before they can be used in a publication. For
information on how to upload shared resources, see Manage Shared Resources.

4.1 Publication Types
Publication type resources are relatively small XML files, each one defining a single publication type.
They define the following characteristics of a publication:

• The icon and label used to represent the publication in CUE

• Which optional features the publication provides

Here is the default publication type supplied with the Content Store, used for standard online
publications:

<?xml version="1.0" encoding="UTF-8"?>
<publication-type
 xmlns="http://xmlns.escenic.com/2019/publication-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="default">
 <ui:label>Default</ui:label>
 <ui:description>The default publication type</ui:description>
 <ui:icon>online</ui:icon>
 <features>
 <feature name="createDefaultInbox" enabled="true"/>
 <feature name="createDefaultFrontpage" enabled="true"/>
 <feature name="createIncomingSection" enabled="true"/>
 </features>
</publication-type>

All the optional features are enabled in this publication type. For other publications, these features
may not be of interest and should then be disabled to save resources. Here, for example, is the print
publication supplied with the Content Store:

<?xml version="1.0" encoding="UTF-8"?>
<publication-type xmlns="http://xmlns.escenic.com/2019/publication-type"

Copyright © 2018-2022 Stibo DX A/S Page 39

http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html

CUE Content Store Publication Design Guide

 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="print">
 <ui:label>Print</ui:label>
 <ui:description>Used for print publications</ui:description>
 <ui:icon>print</ui:icon>
 <features>
 <feature name="createDefaultInbox" enabled="false"/>
 <feature name="createDefaultFrontpage" enabled="false"/>
 <feature name="createIncomingSection" enabled="false"/>
 </features>
</publication-type>

For a complete reference description of the publication-type format, see publication-type.

4.2 Storyline Resources
Content types defined using content-type definitions alone can be large and complex, but they are
also quite rigidly defined. In order to be able to write the text content of a news story or article, a more
flexible structure is required. In CUE, that flexibility can be provided in two different ways:

• By including a rich text field in the content type definition. This is the old way of creating a story
content type. The rich text field is rendered as a rich text editor in CUE, and allows the user to write
and format HTML content in a relatively free way. A rich text field is defined as a basic field with
the MIME type application/xhtml+xml, for example:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 ...
</field>

This kind of content type is still supported, since there are many existing publications containing
stories of this type. It is not the recommended method of creating story content types, however.

• By using storylines and story elements. This is the recommended method for new publications.

A story element is a block-level story component such as a paragraph, a heading or an image. Different
types of story element are defined in XML resource files called story element types. A storyline is a
particular type of story structure that makes use of a specified set of story element types in a specified
way. Storylines are defined in XML resource files called storyline templates. When a user creates a
new story in CUE, the first thing he must do is select which storyline template the story is to be based
on.

Story element types and storyline templates are closely related to content-type resources, and use
many of the same elements and namespaces. They differ, however, in the following ways:

• They are global resources that can be shared between many publications, and are not tied to a
single publication.

• Although users may create their own story element types and storyline templates, and often will
do so, it is not absolutely necessary: a starter pack of standard story element types and storyline
templates is included in the Content Store distribution.

The following standard story element types are included in the Content Store distribution:

answer
embed

Copyright © 2018-2022 Stibo DX A/S Page 40

http://docs.cuepublishing.com/ece-resource-ref/7.14/publication_type.html

CUE Content Store Publication Design Guide

external_link
facebook_attachments
facebook_post
gallery
headline
image
internal_link
interview
lead_text
map
note
paragraph
print_assets
print_body
print_byline
print_head_deck
print_head
pull_quote
question
relation
table
video

together with the following standard storyline templates:

• Blank (a permissive template that imposes no predefined structure)

• Default (must start with a headline)

• Strict (must start with the sequence headline, lead text, image, paragraph)

These storyline resources can be found in in the Content Store distribution's contrib/starter-
pack folder. If you want to use them in your publications, then all you need to do is upload them to the
Content Store, as described in Manage Shared Resources.

If the standard storyline resources do not meet your requirements, then you can create your own and
upload them in the same way.

4.2.1 Story Element Types

A story element is a block-level component of the text flow in a story. Examples of story elements
include:

• Headings

• Ordinary paragraphs

• Specially-formated paragraphs such as fact boxes and pull quotes

• Complex structures such as interviews (an interview is a sequence of specially formatted questions
and answers)

• Images, videos and audio recordings

• Embeds

• Related stories

Copyright © 2018-2022 Stibo DX A/S Page 41

http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html

CUE Content Store Publication Design Guide

Story element types are defined in XML files, one type per file. Standard story element types are
included in the Content Store distribution, but you can modify them and/or create additional ones of
your own. The following sections contain descriptions of a few different element types.

4.2.1.1 Paragraph Element Type

Here is a story element type definition for a paragraph:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="paragraph">
 <ui:label>Paragraph</ui:label>
 <ui:icon>paragraph</ui:icon>
 <ui:priority>800</ui:priority>
 <field name="paragraph" type="basic" mime-type="text/plain">
 <annotation name="bold"/>
 <annotation name="italic"/>
 <annotation name="underline"/>
 <annotation name="strike"/>
 <annotation name="subscript"/>
 <annotation name="superscript"/>

 <annotation name="inline_link">
 <allow-story-element-type>
 <ref-story-element-type name="external_link"/>
 </allow-story-element-type>
 <ui:style>
 {
 color: blue;
 text-decoration: underline;
 }
 </ui:style>
 </annotation>

 <annotation name="internal_link">
 <allow-story-element-type>
 <ref-story-element-type name="internal_link"/>
 </allow-story-element-type>
 <ui:style>
 {
 color: green;
 text-decoration: underline;
 }
 </ui:style>
 </annotation>

 <annotation name="note">
 <allow-story-element-type>
 <ref-story-element-type name="note"/>
 </allow-story-element-type>
 <ui:style>{ background-color: yellow; }</ui:style>
 </annotation>

 <ui:summary-field/>
 </field>
</story-element-type>

The above definition says that a paragraph element:

Copyright © 2018-2022 Stibo DX A/S Page 42

CUE Content Store Publication Design Guide

• Will be called Paragraph in CUE (<ui:label>Paragraph</ui:label>)

• Will be represented by the paragraph icon in CUE

• Has one field (called paragraph) that may contain plain text (type="basic" mime-
type="text/plain")

• Will be positioned in the storyline editor's insert menus using the <ui:priority/> setting: it
will appear after elements with higher priority settings, and before elements with lower priority
settings.

• Can be formatted by applying various annotations (inline formatting instructions) to the
contained text. The ui:annotation elements specify which formats are allowed in paragraphs.

In CUE the specified annotations appear as buttons on a formatting bar. This bar appears whenever
the user selects some of the text in the paragraph:

The bold, italic, underline, strike, subscript and superscript annotations are
built in to CUE, with predefined rendering and button icons. You can, however, define your own
additional annotations, like the inline_link, internal_link and note annotations in the
above example. For more about this, see section 4.2.1.8.

4.2.1.2 Image Element Type

Here is another story element type, this one for images:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="image">

 <ui:element-style>image</ui:element-style>

 <ui:label>Image/Gallery</ui:label>
 <ui:icon>photo</ui:icon>
 <ui:priority>700</ui:priority>

 <field name="alignment" type="enumeration" >
 <ui:label>Alignment</ui:label>
 <ui:editor-style>buttons</ui:editor-style>
 <enumeration value="left">
 <ui:label>Left</ui:label>
 </enumeration>
 <enumeration value="center">
 <ui:label>Center</ui:label>
 </enumeration>
 <enumeration value="right">
 <ui:label>Right</ui:label>
 </enumeration>
 </field>

 <field name="caption" type="basic" mime-type="text/plain">
 <ui:label>Caption</ui:label>
 </field>
 <field name="copyright" type="basic" mime-type="text/plain">
 <ui:label>Copyright</ui:label>

Copyright © 2018-2022 Stibo DX A/S Page 43

CUE Content Store Publication Design Guide

 </field>

 <field name="relation" type="link">
 <relation>com.escenic.content-item</relation>
 <constraints>
 <allow-content-types>
 <ref-content-type name="picture"/>
 </allow-content-types>
 <required>true</required>
 </constraints>
 <ui:search-filter-name>image-search-filter</ui:search-filter-name>
 </field>
</story-element-type>

Elements of this type consist of three fields:

• The first field is labelled Alignment and is rendered as three buttons, one for each possible value.

• The second field is labelled Caption and may contain plain text (type="basic" mime-
type="text/plain"), which in this case may not be formatted since no ui:annotation
elements are specified.

• The third field has no label and is a rendered in CUE as a drop zone to which an image may be
added.

type="link" means that the third field can only contain a link to an object.
<relation>com.escenic.content-item</relation> means that it can only contain a link to
a CUE content item (not an image dragged from the desktop, for example), and the constraints
element narrows things down even further, so that CUE users are only allowed to drop content
items of the type picture in this field. <ui:search-filter-name>image-search-filter</
ui:search-filter-name> means that the CUE asset picker dialog that can be used to select the
image to be added to the field will include a custom search filter called image-search-filter
instead of the default search filter. For information on how to create custom search filters, see section
4.5.

The <ui:element-style>image</ui:element-style> at the top of the definition is an
instruction to CUE to treat story elements of this type as image elements.

4.2.1.3 Headline Element Type

This example illustrates the use of the ui:keystroke, ui:style and ui:title-field elements in
story element types:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
 xmlns="http://xmlns.escenic.com/2008 /content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
 <ui:label>Headline</ui:label>
 <ui:icon>headline</ui:icon>
 <ui:priority>900</ui:priority>
 <ui:keystroke>h</ui:keystroke>
 <field name="headline" type="basic" mime-type="text/plain">
 <ui:title-field/>
 </field>
 <ui:style>
 .story-element-headline [contenteditable='true'] {
 font-size: 2.5em;
 }

Copyright © 2018-2022 Stibo DX A/S Page 44

CUE Content Store Publication Design Guide

 </ui:style>
</story-element-type>

If used, the ui:keystroke element must appear as a child of the story-element-type element.
It defines a single alphabetic keystroke that can be used as part of a CUE semantic shortcut for
transforming a story element of some other type into the current type (headline in this case). With
this definition, a CUE user can convert a paragraph (for example) into a heading by pressing Shift
Shift t h.

If used, the ui:style element must appear as a child of the story-element-type element. It
controls the appearance of the story element type in CUE. For more information on how to use the
ui:style element, see section 7.3.

If used, the ui:title-field element must appear as a child of the story-element-type element.
It indicates that this story element type can be used by CUE to automatically fill a story's slug field (the
field pointed to by a story content type's ui:title-field element. For more information about this,
see section 3.2.2.

Story element type definitions are defined using XML elements from the same namespace as the
content-type resource. Whereas the root of a content-type resource is a content-types
element, the root element of a story element type definition is a story-element-type element. So
for a complete, formal description of the file format, start here.

4.2.1.4 Interview Element Type

The interview element type is an example of a complex element type.

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="interview">
 <ui:label>Interview</ui:label>
 <ui:icon>interview</ui:icon>
 <ui:priority>450</ui:priority>
 <elements>
 <constraints>
 <allowed-story-elements>
 <ref-story-element-type name="question"/>
 <ref-story-element-type name="answer"/>
 </allowed-story-elements>
 </constraints>
 <base-story-element>
 <ref-story-element-type name="question"/>
 </base-story-element>
 <default-story-elements>
 <ref-story-element-type name="question"/>
 </default-story-elements>
 <ui:element-flow element="question" next="answer"/>
 </elements>
</story-element-type>

A complex element type is perhaps best regarded as a "mini-storyline". Its internal structure is exactly
the same as the internal structure of a storyline-template element. It defines a constrained
sequence of elements that can be inserted as block into a storyline: In this case a sequence of
question and answer elements (each of which has its own element type definition).

Copyright © 2018-2022 Stibo DX A/S Page 45

http://docs.escenic.com/ece-resource-ref/7.14/ct_story_element_type.html

CUE Content Store Publication Design Guide

For a more detailed description of the internal structure of both storyline templates and complex
element types, see section 4.2.2.

One thing to note from this example, however, is the use of the ui:element-flow element. This
element modifies the behavior of CUE. The default behavior of CUE is to create a new element of
the base element type when the user presses Enter in the storyline editor. The ui:element-flow
element changes this behavior so that if the insertion caret is in a question element, then pressing
Enter creates an answer element.

4.2.1.5 Table Element Type

The table element type illustrates two features you can use for creating more complex types of story
elements:

• Field editors

• Settings fields

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="table">
 <ui:label>Table</ui:label>
 <ui:priority>550</ui:priority>
 <ui:icon>table</ui:icon>
 <field mime-type="application/json" type="basic" name="tableeditor">
 <ui:editor type="web-component" name="data-visualization" />
 </field>

 <field name="rowheader" type="boolean">
 <ui:label>Use first row as labels</ui:label>
 <ui:value-if-unset>false</ui:value-if-unset>
 <ui:editor-style>settings</ui:editor-style>
 </field>

 <field name="columnheader" type="boolean">
 <ui:label>Use first column as labels</ui:label>
 <ui:value-if-unset>false</ui:value-if-unset>
 <ui:editor-style>settings</ui:editor-style>
 </field>
</story-element-type>

The tableeditor field above illustrates how you associate a field with a CUE field editor. Field
editors are custom-built editors for displaying and editing specialized field types in CUE. You can,
for example, create specialized date picker components for editing date fields, map components for
editing location coordinates, and so on. Field editors can either be implemented as web components
(created using HTML, Javascript and so on) or as enrichment services (that is, web services). In
this case the tableeditor field is associated with a CUE web component extension called data-
visualization. All of the table element type's table editing functionality is provided by this web
component, not by CUE itself.

For further information about CUE web components and enrichment services, see the CUE
documentation. For further information about the ui:editor element used to associate the field with
the data-visualization web component, see ui:editor.

Copyright © 2018-2022 Stibo DX A/S Page 46

http://docs.escenic.com/cue.html
http://docs.escenic.com/cue.html
http://docs.escenic.com/ece-resource-ref/7.14/ih_editor.html

CUE Content Store Publication Design Guide

The rowheader and columnheader fields (boolean switches that determine whether a table should
have row or column headings are settings fields. A settings field doesn't appear in the story element
itself in CUE, but in a separate Settings dialog, displayed by clicking on a Settings button:

The rowheader and columnheader fields are displayed in the Settings dialog because of the
ui:editor-style elements included in their definitions. The ui:editor-style element must
contain the value settings. For further information about this element, see ui:editor-style.

4.2.1.6 List Element Types

The list_bulleted element type shown below is a complex element type for handling bulleted lists.
A bulleted list is basically a complex element consisting of a sequence of paragraph story elements.
Because the paragraph story elements are wrapped inside a bulleted-list story element, they
are given a special appearance by CUE – they are indented and prefixed with a bullet character. The
list_numbered element type is more or less identical, but uses a numerical prefix instead of a bullet.

<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="list_bulleted">
 <ui:label>Bulleted List</ui:label>
 <ui:group-prefix-label>List</ui:group-prefix-label>
 <ui:element-style>list</ui:element-style>
 <ui:keystroke>b</ui:keystroke>
 <ui:count show="true" for="body total"></ui:count>
 <field name="list_style" type="enumeration">
 <ui:editor-style>settings</ui:editor-style>
 <ui:label>List style</ui:label>
 <ui:value-if-unset>disc</ui:value-if-unset>
 <enumeration value="disc">
 <ui:label>Bullet</ui:label>
 </enumeration>
 <ui:list-style-field/>
 <ui:hidden/>
 </field>
 <elements>
 <ui:label>List</ui:label>
 <constraints>
 <allowed-story-elements>
 <ref-story-element-type name="list_bulleted"/>
 <ref-story-element-type name="list_numbered"/>
 <ref-story-element-type name="paragraph"/>
 </allowed-story-elements>
 </constraints>
 <base-story-element>
 <ref-story-element-type name="paragraph"/>
 </base-story-element>
 <default-story-elements>
 <ref-story-element-type name="paragraph"/>
 </default-story-elements>
 <ui:element-wrap element="paragraph" in="list_bulleted">
 <ui:keystroke>TAB</ui:keystroke>
 </ui:element-wrap>
 <ui:element-wrap element="paragraph" in="list_bulleted" content="-">
 <ui:keystroke>SPACE</ui:keystroke>
 </ui:element-wrap>
 <ui:element-wrap element="paragraph" in="list_numbered" content="1.">
 <ui:keystroke>SPACE</ui:keystroke>

Copyright © 2018-2022 Stibo DX A/S Page 47

http://docs.escenic.com/ece-resource-ref/7.14/ih_editor_style.html

CUE Content Store Publication Design Guide

 </ui:element-wrap>
 <ui:element-unwrap element="paragraph" unwrap-mode="keep-in-group">
 <ui:keystroke>shift TAB</ui:keystroke>
 </ui:element-unwrap>
 <ui:element-unwrap element="paragraph" content="">
 <ui:keystroke>ENTER</ui:keystroke>
 </ui:element-unwrap>
 </elements>
</story-element-type>

The list element types have the following interesting features:

• <ui:element-style>list</ui:element-style> is an instruction to CUE to treat story
elements of this type as list elements. This means, among other things that the +, settings and
delete buttons normally displayed for each story element are suppressed inside the list (but not
for the list as a whole). List items can only be added and removed using the keystrokes defined in
ui:element-wrap and ui:element-unwrap elements (see below).

• The <ui:list-style-field/> element identifies its parent field as a list style field (that is, a
field used to define the style of the list). The field can contain any CSS list-style-type property
value (disc, circle, square etc. for bulleted lists, decimal, upper-alpha, lower-alpha etc.
for numbered lists) Currently, the list style fields in the supplied story element types each contain
only a single alternative (disc for bulleted lists and decimal for numbered lists). The field is
therefore hidden. You can however add alternative values and remove the ui:hidden element.
Note, however, that this setting only supports the display of alternative list styles in CUE: you
may need to make corresponding changes in your presentation/print applications to support the
additional list styles.

• The allowed-story-elements list includes not only paragraph (representing list items) but
also list_bulleted and list_numbered. In other words, a list is allowed to contain sublists.

• ui:element-wrap defines a function for wrapping a story element inside another story element
(in this case, wrapping a paragraph story element inside a list_bulleted or list_numbered
story element. This, for example:

<ui:element-wrap element="paragraph" in="list_bulleted">
 <ui:keystroke>TAB</ui:keystroke>
</ui:element-wrap>

specifies that pressing the TAB key with the caret marker inside a paragraph story element (that
is, a list item), will wrap a list_bulleted story element around it, effectively moving it into a
sublist.

Adding a content attribute to a ui:element-wrap element makes the function dependent on
the current content of the target story element:

<ui:element-wrap element="paragraph" in="list_numbered" content="1.">
 <ui:keystroke>SPACE</ui:keystroke>
</ui:element-wrap>

Here, pressing the SPACE key will only wrap the paragraph element in a list_numbered
element if its current content is "1.". Effectively, this means you can start a numbered sublist by
simply typing "1.SPACE". A third ui:element-wrap uses the same mechanism to let users start a
bulleted list by typing "-SPACE"

• ui:element-unwrap defines a function for unwrapping a wrapped story element. This for
example:

<ui:element-unwrap element="paragraph" unwrap-mode="keep-in-group">

Copyright © 2018-2022 Stibo DX A/S Page 48

CUE Content Store Publication Design Guide

 <ui:keystroke>shift TAB</ui:keystroke>
</ui:element-unwrap>

specifies that pressing shift TAB with the caret marker inside a wrapped paragraph story
element, will unwrap it. In the case of a list item, in other words it will move it from the sublist to
the parent list. The unwrap-mode="keep-in-group" attribute specifies that this function will
never unwrap the target element completely (that is, move it to the root level of the storyline). In
the context of a list item, this means you can use shift TAB to move a list item from its current
sublist to a parent list, but you cannot use it to change a list item into an ordinary paragraph.

This ui:element-unwrap element does allow the user to convert a list item into an ordinary
paragraph, since it has no unwrap-mode="keep-in-group":

<ui:element-unwrap element="paragraph" content="">
 <ui:keystroke>ENTER</ui:keystroke>
</ui:element-unwrap>

However, the content="" attribute means that this unwrap function will only work on empty list
items.

• ui:group-prefix-label defines a string to be prepended to the labels of any child story
elements. In the case of these lists, The prefix List is used to turn the Paragraph labels of the list
item paragraph elements into List Paragraph labels.

4.2.1.7 Relations

The relation story element type included with the Content Store distribution is very simple – it just
contains a relation field that can be used to hold a reference to a related content item, plus a title
and summary field. The relation field definition is of type link (meaning it will act as a drop zone
in CUE), and contains a relation child element set to com.escenic.content-item (so that the
drop zone will only accept content item objects). The constraints limits the types of content items
that can be accepted.

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="relation">
 <ui:label>Relation</ui:label>
 <ui:icon>relation</ui:icon>
 <ui:priority>550</ui:priority>
 <field name="title" type="basic" mime-type="text/plain">
 <ui:label>Title</ui:label>
 </field>
 <field name="summary" type="basic" mime-type="text/plain">
 <ui:label>Summary</ui:label>
 </field>
 <field name="relation" type="link">
 <ui:label>Relation</ui:label>
 <relation>com.escenic.content-item</relation>
 <constraints>
 <allow-content-types>
 <ref-content-type name="story" />
 </allow-content-types>
 <allow-content-types>
 <ref-content-type name="storyline" />
 </allow-content-types>
 </constraints>
 </field>

Copyright © 2018-2022 Stibo DX A/S Page 49

CUE Content Store Publication Design Guide

</story-element-type>

A relation story element type defined in this way, however, does not offer all the summary display
functionality that is available elsewhere in CUE. The content item summary displayed in a section page
editor, for example, allows the user to override the related content item's media attachments so that a
different image is displayed on the section page than in the content item itself.

It is, however, possible define a more complex relation story element type that does provide this
kind of flexibility. In order to do so, you need to:

• Create an auxiliary story element type to hold relations to the media attachments (called
relation_content_item in the example shown below)

• Add an elements structure to hold the media relations

Here is an example of such a complex relation story element type, with the addition highlighted:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="relation">
 <ui:label>Relation</ui:label>
 <ui:icon>relation</ui:icon>
 <ui:priority>550</ui:priority>
 <field name="title" type="basic" mime-type="text/plain">
 <ui:label>Title</ui:label>
 </field>
 <field name="summary" type="basic" mime-type="text/plain">
 <ui:label>Summary</ui:label>
 </field>
 <field name="relation" type="link">
 <ui:label>Relation</ui:label>
 <relation>com.escenic.content-item</relation>
 <constraints>
 <allow-content-types>
 <ref-content-type name="story" />
 </allow-content-types>
 <allow-content-types>
 <ref-content-type name="storyline" />
 </allow-content-types>
 </constraints>
 </field>
 <elements>
 <ui:label>Attached images and videos</ui:label>
 <constraints>
 <allowed-story-elements>
 <ref-story-element-type name="relation_content_item"/>
 </allowed-story-elements>
 </constraints>
 </elements>
</story-element-type>

Here is an example of the required auxiliary story element type:

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="relation_content_item">

Copyright © 2018-2022 Stibo DX A/S Page 50

CUE Content Store Publication Design Guide

 <ui:label>Relation Content Item</ui:label>
 <ui:hidden/>
 <field name="relation" type="link">
 <ui:label>Relation</ui:label>
 <relation>com.escenic.content-item</relation>
 <constraints>
 <required>true</required>
 <allow-content-types>
 <ref-content-type name="story" />
 <ref-content-type name="storyline" />
 <ref-content-type name="video"/>
 <ref-content-type name="picture"/>
 <ref-content-type name="graphic"/>
 </allow-content-types>
 </constraints>
 </field>
</story-element-type>

Note the ui:hidden element, which ensures that the story element type will not appear anywhere else
in CUE.

4.2.1.8 Custom Annotations

You can define annotations of your own to supplement the built-in annotations provided with CUE.

4.2.1.8.1 Simple Annotations

The simplest kind of annotation definition consists of just a name and some CSS defining how the
annotation is to be rendered by CUE:

<annotation name="shock">
 <ui:style>{ color: red; }</ui:style>
</annotation>

If you added the above annotation to your paragraph story element type, then when editing
paragraph elements in CUE, you would see that the formatting bar now included a new style button.
Since your annotation definition doesn't include an icon, the button would be formed from the first
two characters of the annotation name: sh in this case. You can, however, include a CSS icon definition
as follows:

<annotation name="shock">
 <ui:style>{ color: red; }</ui:style>
 <ui:icon>
 {
 -moz-osx-font-smoothing: grayscale;
 -webkit-font-smoothing: antialiased;
 font-family: "Storylines";
 font-size: 90%;
 content: "\E889";
 }
 </ui:icon>
</annotation>

CUE actually includes built-in icons for the commonly-used custom annotations supplied in the
Content Store starter pack: inline_link, internal_link and note. So you don't need to
define your own icons for these annotations (although you can override the default ones if you
choose).

Copyright © 2018-2022 Stibo DX A/S Page 51

CUE Content Store Publication Design Guide

4.2.1.8.2 Complex Annotations

You can also define more complex annotations that contain an information structure as well as a name
and a presentation. The Content Store starter pack includes three examples of this kind of annotation:
inline_link, internal_link and note. The internal_link annotation, for example has the
name internal_link, an associated rendering (blue text with an underline), but in addition it needs
to hold the URL and link text plus a couple of other values. In order to achieve this, the annotation
definition includes a reference to a special story element type used to define the annotation's data
structure:

<annotation name="inline_link">
 <allow-story-element-type>
 <ref-story-element-type name="external_link"/>
 </allow-story-element-type>
 <ui:style>
 {
 color: blue;
 text-decoration: underline;
 }
 </ui:style>
</annotation>

The allow-story-element-type element specifies that an annotation may include a reference to
a single story element, and the ref-story-element-type element specifies that the story element
must be of the type external_link.

Here is the definition of the external_link story element type (which is also supplied in the Content
Store starter pack).

<?xml version="1.0" encoding="UTF-8"?>
<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="external_link">
 <ui:label>External Link</ui:label>
 <ui:icon>external_link</ui:icon>
 <ui:hidden/>

 <field name="uri" type="uri">
 <ct:constraints
 xmlns:ct="http://xmlns.escenic.com/2008/content-type">
 <ct:required>true</ct:required>
 </ct:constraints>
 <ui:label>Link</ui:label>
 </field>

 <field name="newWindow" type="boolean">
 <ui:label>Open in new window</ui:label>
 <ui:value-if-unset>true</ui:value-if-unset>
 </field>

 <field name="noFollow" type="boolean">
 <ui:label>Do not follow</ui:label>
 <ui:value-if-unset>true</ui:value-if-unset>
 </field>

</story-element-type>

Copyright © 2018-2022 Stibo DX A/S Page 52

CUE Content Store Publication Design Guide

This story element type defines the items of information that will be stored with an inline_link
annotation, and the fields in the dialog that is displayed by CUE when the user inserts an inline link:

There are two things to bear in mind when defining a story element type for use with an annotation:

• There is no point including any ui:style or annotation elements – they will be ignored.

• The definition should always include a ui:hidden element. This ensures that the story element
type will not appear anywhere in CUE other than as an annotation dialog.

4.2.2 Storyline Templates

A storyline template defines rules regarding which story element types may (or must) appear in a
storyline. Standard storyline templates are included in the Content Store distribution, but you can
modify them and/or create additional ones of your own. Here is an example storyline template:

<?xml version="1.0"?>
<storyline-template
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="strict">
 <elements>
 <constraints>
 <required-story-elements>
 <ref-story-element-type name="kicker" allow-empty="true"/>
 <ref-story-element-type name="headline"/>
 <ref-story-element-type name="lead_text"/>
 <ref-story-element-type name="image"/>
 <ref-story-element-type name="paragraph"/>
 </required-story-elements>

 <allowed-story-elements>
 <ref-story-element-type name="headline"/>
 <ref-story-element-type name="lead_text"/>
 <ref-story-element-type name="paragraph"/>
 <ref-story-element-type name="pull_quote"/>
 <ref-story-element-type name="image"/>
 <ref-story-element-type name="gallery"/>
 <ref-story-element-type name="embed"/>
 <ref-story-element-type name="relation"/>
 <ref-story-element-type name="map"/>
 <ref-story-element-type name="table"/>
 <ref-story-element-type name="interview"/>
 </allowed-story-elements>
 </constraints>

 <base-story-element>
 <ref-story-element-type name="paragraph"/>

Copyright © 2018-2022 Stibo DX A/S Page 53

CUE Content Store Publication Design Guide

 </base-story-element>
 </elements>
</storyline-template>

The root storyline-template element must contain a single elements element that defines the
elements from which a storyline of this type is constructed. The elements element:

• Must contain one base-story-element and one constraints element

• May contain one default-story-elements element

These elements have the following usage and meaning:

default-story-elements
If present, this element must contain one or more ref-story-element-types referencing
default elements. When a storyline is created in CUE, these elements are inserted by default.
They are inserted immediately after any required story elements, in the order specified. Unlike
required story elements, default elements can be deleted. It is also possible to insert other
elements above and between them.

constraints
This element specifies rules about what the storyline may contain. The primary constraint
is specified with an allowed-story-elements element. Additional constraints may be
specified with required-story-elements, min and max elements. These elements have the
following usage and meaning:

allowed-story-elements
Must contain one or more ref-story-element-types referencing the elements that
may be inserted using the CUE storyline editor's insert element menu:

This menu is displayed by clicking on one of the + buttons displayed after and between
story elements (anywhere insertion of a new element is allowed). It allows you to select
the element type to be inserted.

The appearance of entries in the insert element menu depend upon how the element
types are defined. Elements that have an icon (specified with ui:icon in the story-
element-type file) appear as buttons on the right side of the menu bar, those that do
not are displayed in the drop down list at the left hand end of the menu bar.

required-story-elements
If present, must contain one or more ref-story-element-types referencing elements
that must be present in the storyline. When a storyline is created in CUE, these elements
are inserted by default. They are inserted at the top of the story in the order specified and
cannot be deleted. Nor is it possible to insert other elements above or between them.

By default, the required elements are not allowed to be empty, thereby enforcing a
strict sequence of specified elements at the top of the storyline. It is, however, possible
to introduce a degree of flexibility by specifying allow-empty="true" on some of
the required elements. In the example above, for example, the kicker element above
the headline is allowed to be empty. The publication templates can then be configured
to ensure that the kicker disappears completely if it is empty, making the the kicker
effectively an optional element.

Copyright © 2018-2022 Stibo DX A/S Page 54

CUE Content Store Publication Design Guide

minimum, maximum
The minimum/maximum number of story elements the storyline may contain.

The name attribute of a ref-story-element-type element must exactly match the name of a
story-element-type.

Storyline templates are defined using XML elements from the same namespace as the content-type
resource. Whereas the root of a content-type resource is a content-types element, the root
element of a story element type definition is a storyline-template element. So for a complete,
formal description of the file format, start here.

4.3 Container Types
A container is a structure for managing content inheritance between content items. It defines the
relationships between a base content item and a number of variant content items that have no
content of their own but inherit content from the base content item and present it in a different form
for use in a different context or channel. A typical container might hold a base content item belonging
to an online publication (or channel), plus variants aimed for publication in print, Facebook and
Twitter channels. Containers are publication-independent objects. The content items they contain all
belong to (different) publications, but the containers themselves do not.

Container types define the types of container that can be created. The defined container types show
up in CUE's Create new dialog in the same way as content types, allowing users to create containers
rather than directly creating content items.

One container type resource file contains the definition of one container type.

A typical container type resource file looks something like this:

<?xml version="1.0" encoding="UTF-8"?>
<container-type
 xmlns="http://xmlns.escenic.com/2019/container-type"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:doc="http://xmlns.vizrt.com/2010/documentation"
 name="news">
 <ui:label>News story</ui:label>

 <ui:title-field>com.escenic.container.slug</ui:title-field>
 <ct:field mime-type="text/plain" type="basic" name="com.escenic.container.slug">
 <ct:constraints>
 <ct:required>true</ct:required>
 </ct:constraints>
 </ct:field>

 <ct:relation-type name="com.escenic.container.items">
 <ui:label>Content items in this container</ui:label>
 </ct:relation-type>

 <first-destination content-type="storyline" publication="tomorrow-online">
 <constraints>
 <allowed-destination content-type="storyline"/>
 <allowed-destination content-type="print-story" publication="tomorrow-today"
 max="1"/>

Copyright © 2018-2022 Stibo DX A/S Page 55

http://docs.escenic.com/ece-resource-ref/7.14/ct_storyline_template.html

CUE Content Store Publication Design Guide

 <allowed-destination content-type="facebook" publication="tomorrow-facebook"/>
 <allowed-destination content-type="twitter" publication="tomorrow-twitter"/>
 </constraints>
 </first-destination>
 <first-destination content-type="storyline" publication="tomorrow-sport"/>

 <copy-fields>
 <copy-field source-content-type="storyline"
 target-content-type="print-story"
 source-field="metadata.authors"/>
 </copy-fields>

</container-type>

This defines a container type called news. The ui:label element ensures that it will show up in
CUE's Create new dialog as "News story" rather than just "news".

According to the formal syntax definition of a container type resource, the inclusion of field and
relation-type elements is optional, and you can include as many as you like of each. In reality you
should include one of each, defined exactly as shown in the example above. The field element is
used to define a slug (that is, working title) field for the container, and the relation-type element
defines a relation drop zone used to hold relations to all the content items in the container.

Both the slug field and the content items relation are displayed on an automatically created tab called
Main that is added to all the container's content items in CUE. This means that whenever you open
one of the content items belonging to a container:

• You can see that it belongs to a container (because it has a Main tab).

• You can see and edit the container's slug.

• You can see what other content items belong to the same container and open them.

The relation-type element must be called com.escenic.container.items. The field element
can be called anything you like although com.escenic.container.slug is recommended.
Whatever you call it, however, you must declare it as the slug field by including a ui:title-field
element as shown in the example.

The most important elements in a container type resource are the first-destination elements,
as these determine which content types can be used as base content items. A container type resource
must contain at least one first-destination element, but may contain many. Each element
specifies a publication and a content-type. When the CUE Create new dialog is displayed,
these first-destination elements determine which container types are displayed as options. A
container type will only be displayed if at least one of its first-destination elements specifies a
publication that is visible to the current user. A publication is visible to a CUE user if:

• The user has the right to create content in the publication.

• The user has configured CUE to show the organizational unit to which the publication belongs.

In addition, a container type will only be displayed if the content types referenced in its first-
destination elements are correctly configured for use in containers. Specifically, a content
type must have a storyline field that is constrained to use only one specific storyline template. For
further information about this, see section 3.2.2.1.

When the user selects one of the displayed container types, the first-destination elements are
again used to determine exactly what is created. If the user has the right to create content in only one

Copyright © 2018-2022 Stibo DX A/S Page 56

CUE Content Store Publication Design Guide

of the publications named in the first-destination list, then that first-destination element
is used to create a container. In the case of the container type example shown above, a user with
creation rights in Tomorrow Online only would get a container holding a base storyline content
item in tomorrow-online. A user with creation rights in Tomorrow Sport only, on the other hand,
would get a container holding a base storyline content item in tomorrow-sport.

The copy-fields element is optional. It is used to control the copying (not inheritance) of
metadata, fields and relations from base content items to variants. It contains a sequence of one or
more copy-field elements. Each copy-field element specifies the circumstances in which a
particular field should be copied from the base content item to a variant: if the base content item is
of type source-content-type and the variant is of target-content-type then copy the field,
metadata field or relations specified in source-field. An optional target-field attribute allows
fields and relation types to be copied to different fields/relation types in the target.

A first-destination element may contain a constraints element, which in turn must contain
one or more allowed-destination elements. If a constraints element is specified, then the list
of allowed-destinations determines what kinds of variants the base content item is allowed to
have: that is, it limits the publication/content type combinations offered by CUE when the user makes
a variant. If no constraints are specified, then CUE will offer all destinations to which the user has
access, if constraints are specified then CUE will only offer the allowed destinations to which the user
has access. The publication attribute is optional. If it is left out of the allowed destination constraint,
CUE will offer all destinations where the content type is defined and to which the user has access.
Constraints with both content type and publication will override constraints without publication if
they form duplicate destination. It is also possible to limit how many times a destination is used by
specifying the allowed-destination elements max attribute. In the example shown above, each
storyline in Tomorrow Online may only be used to create one print-story in Tomorrow Today,
while they can be used to create any number of Facebook and Twitter posts and also any number of
stories with the storyline content type for all publications where the user has access.

For a complete reference description of the container-type format, see container-type.

4.4 Custom Workflow Definitions
Custom workflows are defined in XML files, one workflow per file. The workflows are defined as
state charts, using the W3C standard State Chart XML format. These state chart definition files are
conventionally given the extension .scxml.

The Content Store has two built-in workflows (standard and standard-staging). If these are
insufficient for your requirements, some workflow state charts are supplied in the Content Store
distribution's contrib/starter-pack folder. Here you will find state charts for the two built-in
workflows, plus a few additional ones:

image.scxml
standard.scxml
standard-staging.scxml
storylines.scxml
wire.scxml

If you want to use one of the additional workflows in your publications, all you need to do is upload it
to the Content Store, as described in Manage Shared Resources.

Copyright © 2018-2022 Stibo DX A/S Page 57

http://docs.cuepublishing.com/ece-resource-ref/7.14/container_type.html
https://www.w3.org/TR/scxml
http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html

CUE Content Store Publication Design Guide

If none of the supplied workflows meet your requirements, then you can create your own and upload
them in the same way.

The overall procedure for creating and using a new workflow is:

1. Create a state chart (.scxml file) defining the states and transitions that make up your new
workflow. Read section 4.4.1 and section 4.4.2 to find out how to do this.

2. Upload the workflow definition as described in Manage Shared Resources.

3. Open your publication's content-type resource for editing.

4. Add the name of the new workflow to the required content type definitions in your content-
type resource. The new workflow will only be used for the specified content types. The name is
specified using the content-type element's workflow attribute (see content-type).

5. Upload the modified content-type resource as described in Update Resources.

4.4.1 Example Workflow

Here is an example workflow definition called wire.scxml:

<?xml version="1.0" encoding="UTF-8"?>
<scxml xmlns="http://www.w3.org/2005/07/scxml"
 xmlns:cs="http://xmlns.escenic.com/2013/content-state"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:acl="http://xmlns.escenic.com/2018/acl"
 name="wire" initial="new" version="1.0" >

 <state id="new">
 <ui:label>New</ui:label>
 <ui:label lang="de">Neu</ui:label>
 <transition target="read" event="read"/>
 <acl:content>
 <acl:role name="reader">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="journalist">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="editor">
 <acl:permission>read</acl:permission>
 <acl:permission>write</acl:permission>
 </acl:role>
 </acl:content>
 </state>

 <state id="read">
 <ui:label>Read</ui:label>
 <ui:label lang="de">Lesen</ui:label>
 <ui:icon>read</ui:icon>
 <transition target="new" event="new"/>
 <transition target="used" event="used"/>
 <acl:content>
 <acl:role name="reader">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="journalist">
 <acl:permission>read</acl:permission>
 </acl:role>

Copyright © 2018-2022 Stibo DX A/S Page 58

http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html
http://docs.escenic.com/ece-resource-ref/7.14/ct_content_type.html
http://docs.escenic.com/ece-server-admin-guide/7.14/update_resources.html

CUE Content Store Publication Design Guide

 <acl:role name="editor">
 <acl:permission>read</acl:permission>
 <acl:permission>write</acl:permission>
 </acl:role>
 </acl:content>
 </state>

 <state id="used">
 <ui:label>Used</ui:label>
 <transition target="read" event="read">
 <ui:description>Are you sure you would like to mark the wire as read?</
ui:description>
 <cs:choice>
 <cs:name>read</cs:name>
 <ui:label>Mark as read</ui:label>
 <cs:action>read</cs:action>
 </cs:choice>
 </transition>
 <transition target="deleted" event="deleted"/>
 <acl:content>
 <acl:role name="reader">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="journalist">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="editor">
 <acl:permission>read</acl:permission>
 <acl:permission>write</acl:permission>
 </acl:role>
 </acl:content>
 </state>

 <state id="deleted">
 <transition target="new" event="new"/>
 <acl:content>
 <acl:role name="reader">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="journalist">
 <acl:permission>read</acl:permission>
 </acl:role>
 <acl:role name="editor">
 <acl:permission>read</acl:permission>
 <acl:permission>write</acl:permission>
 </acl:role>
 </acl:content>
 </state>

</scxml>

This file defines a custom workflow for handling wire feeds. Wire feeds have some special workflow
requirements because they are only intended to be used as source material for stories, they should not
ever be published. So the purpose of this workflow is to allow wire feeds to be imported into CUE as a
special content type that can be read and copied from, but not published.

In detail, this state chart specifies that:

Copyright © 2018-2022 Stibo DX A/S Page 59

CUE Content Store Publication Design Guide

• Wire feed content items must always be in one of the states new, read, used or deleted. A newly-
created content items will always start out in the state new.

• All four states have the same permissions, which specify that the content can be accessed by any
users, but only modified by editors. Since a change of state is a modification, this means that only
editors can transition the content to a different state.

• New content can only be transitioned to the state read (which indicates that the content has been
seen and read by a member of the editorial team).

• Read content can either be transitioned forward to the state used (which indicates that the content
has been made use of) or back to the state new.

• Used content can either be transitioned forward to the state deleted or back to the state read.

• If an editor tries to transition content back to the state read, a confirmation dialog will be
displayed in CUE, with the prompt "Are you sure you would like to mark the wire as read?".

• Deleted content can only be transitioned back to the state new.

4.4.2 The Workflow Definition Elements

The elements used in workflow definitions are described in the following sections.

4.4.2.1 scxml

The root element of a workflow definition must be an scxml element, and it must belong to the
namespace http://www.w3.org/2005/07/scxml:

<scxml xmlns="http://www.w3.org/2005/07/scxml"
 xmlns:cs="http://xmlns.escenic.com/2013/content-state"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:acl="http://xmlns.escenic.com/2018/acl"
 name="workflow-name" initial="state-id" version="1.0" >
 ...
</scxml>

The scxml element has the following attributes:

name
The name of the work flow.

new
The ID of the first state in the workflow. It must match the id attribute of a child state
element. A new content item that uses this workflow will be created in this state.

version
Must be set to "1.0".

This element should also contain namespace declarations for all the namespaces that will be used in
the workflow definition. You will usually need to include these three declarations:

 xmlns:cs="http://xmlns.escenic.com/2013/content-state"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:acl="http://xmlns.escenic.com/2018/acl"

The scxml element must contain a series of state elements, one for each state in the workflow.

Copyright © 2018-2022 Stibo DX A/S Page 60

CUE Content Store Publication Design Guide

4.4.2.2 state

A state element in a workflow definition represents a content item state. It must belong to the
namespace http://www.w3.org/2005/07/scxml. If you have declared this as the default
namespace on the root element, then no further declaration or prefix is required:

<state id="state-id">
 ...
</state>

The state element has one attribute:

id
The state's ID. It must be unique within the workflow.

A state element should contain the following child elements:

• Zero or more ui:label elements defining the label(s) to be used to represent the state in the CUE
editor. If more than one ui:label is specified, then each should have a different lang attribute. If
no ui:label is specified then the state's id attribute is used as label. For further information, see
ui:label.

• Zero or more transition elements defining the state transitions possible from this state.

• Zero or one ui:icon element, defining an icon to be used to represent the state in the CUE editor.
For further information, see ui:icon.

• One acl:content element defining the permissions for content items in this state.

 <ui:label>New</ui:label>
 <ui:label lang="de">Neu</ui:label>
 <ui:icon color="green">draft</ui:icon>
 <transition target="state-id" event="event-id"/>
 <acl:content>
 ...
 </acl:content>

4.4.2.3 transition

A transition element in a workflow definition represents a possible transition from the state
represented by its parent element to the state identified in the target attribute. It must belong to the
namespace http://www.w3.org/2005/07/scxml.

<transition target="state-id" event="event-id"/>

The transition element has the following attributes:

target
The id of the transition's target state (which must be defined in the same workflow).

event
The id of the event that will trigger this transition. In a custom workflow this must always be
identical to the target id.

The transition element may contain a child ui:description and cs:choice element defining
a confirmation dialog to be displayed by CUE, should that be required. For an example, see the used
state's read transition in section 4.4.1.

Copyright © 2018-2022 Stibo DX A/S Page 61

http://docs.escenic.com/ece-resource-ref/7.14/ih_label.html
http://docs.escenic.com/ece-resource-ref/7.14/ih_icon.html

CUE Content Store Publication Design Guide

4.4.2.4 content

A container for a set of access control permissions that will be enforced for content items in this state.
It must belong to the namespace http://xmlns.escenic.com/2018/acl. Usually this namespace
is assigned the prefix acl in the root scxml element:

<acl:content>
 ...
</acl:content>

The content element has no attributes.

The content element must contain a series of role elements, specifying the permissions to be
granted to various roles. If a role is not specified in this series of role elements, then users with that
role are granted no access to content items in this state.

The content element may also contain one private element.

4.4.2.5 role

Defines the permissions to be granted to users with a specified role. This element must belong to the
namespace http://xmlns.escenic.com/2018/acl. Usually this namespace is assigned the prefix
acl in the root scxml element:

<acl:role name="role-name">
 ...
</acl:role>

The role element has one attribute:

name
The name of a CUE user role. The following roles are available by default:

• reader

• journalist

• editor

• useradmin

• sectionadmin

• tagadmin

• administrator

• articleWithContentTypeReader

• articleWithContentTypeWriter

You can, however, define additional roles if needed. See section 4.8 for further information.

The role element must contain a series of 0 or more permission elements defining the access
permissions to be granted to the role.

4.4.2.6 private

Specifies that the parent state to which this element belongs is a private state. This means that
content items in this state are only visible to content items author(s). In practice, this element is
mostly used for states representing newly created content. It enables a newly created content item

Copyright © 2018-2022 Stibo DX A/S Page 62

CUE Content Store Publication Design Guide

to remain private until the author chooses to make it more widely available by transitioning it to a
different state. This element must belong to the namespace http://xmlns.escenic.com/2018/
acl. Usually this namespace is assigned the prefix acl in the root scxml element:

<acl:private/>

4.4.2.7 permisson

Represents a permission. This element must belong to the namespace http://
xmlns.escenic.com/2018/acl. Usually this namespace is assigned the prefix acl in the root
scxml element:

<acl:permission>
 permission-name
</acl:permission>

The permission element has one optional attribute:

time-control
Specifies that this permission is only granted for time-controlled content items that are in a
specified time control sub-state. It only makes sense to use this attribute in combination with
the published state, since time control is not relevant for other states. It may be set to one of
the following values:

scheduled
The specified permission is only granted for content items that are scheduled for
publishing but not yet actually published.

expired
The specified permission is only granted for content items that were published but have
now expired.

none
No effect: specifying this value is the same as omitting the time-control attribute.

The permission element's content must be one of the following permission names:

• read

• write

4.4.3 Modifying Workflow Definitions

Once a workflow definition has been taken into use, you must think hard before making changes to
it.In particular, you must never delete a workflow state if you have content items in that
state: if you do, the resulting "stateless" content items will become unusable.

The correct way to take a content state out of use is to remove all transitions to that state from the
workflow definition. You can then open all content items in the unwanted state and transition them to
a different state. Once you are certain you have transitioned all your content out of the unwanted state,
you can delete it from the workflow definition.

Copyright © 2018-2022 Stibo DX A/S Page 63

CUE Content Store Publication Design Guide

4.5 Custom Search Filter Definitions
Custom search filters are defined in XML files, one per file. One sample search filter definition is
supplied in the Content Store starter pack: contrib/starter-pack/search-filter/main.xml.
This file is a copy of the default search filter definition included in the Content Store, so uploading it
will have no effect: it's already there. You can however, use it as a starting point for any modifications
you want to make to CUE search functionality. You can use search filter definitions in two ways:

• You can modify the default search filter definition used in CUE's search panel

• You can create one or more additional search filters to be used in dashboards (see section 4.6) and/
or in asset picker dialogs (see (section 3.8.1.2) and section 4.2.1.2)

The overall process is much the same in both cases:

1. Copy contrib/starter-pack/search-filter/main.xml to a new file.

2. Make the required changes to the copied file.

3. Upload the modified file to the Content Store as described in Upload a Resource.

If you are modifying the the default search filter definition used in CUE's search panel then you need to
make sure of the following points:

• That you do not change the value of the ui:panel element while editing the file: it must have the
value cue-search-sidepanel.

• That you enter the path /escenic/search-filter/main in the URI or resource field when
uploading the modified file. This ensures that it overwrites the default definition.

If you are creating an additional search filter to be used in a dashboard, then you need to make sure of
the following points:

• That you remove the ui:panel element while editing the file.

• That you do not enter the path /escenic/search-filter/main in the URI or resource field
when uploading the modified file (otherwise you will break the default main search panel). You
should enter a path of the form /escenic/search-filter/filter-name - /escenic/search-
filter/my-search-filter for example.

4.5.1 Editing a Search Filter Definition

A search filter definition resource is an XML file with the following overall structure:

<?xml version="1.0" encoding="UTF-8"?>
<search-filter xmlns="http://xmlns.escenic.com/2018/search-filter"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="main">
 <filter name="field-name">
 ...
 </filter>
 ...

 <sort-by name="sort-name">
 ...
 </sort-by>
</search-filter>

Copyright © 2018-2022 Stibo DX A/S Page 64

http://docs.escenic.com/ece-server-admin-guide/7.14/upload_resources.html

CUE Content Store Publication Design Guide

In other words:

• The root element is a search-filter element belonging to the namespace http://
xmlns.escenic.com/2018/search-filter.

• The search-filter element contains a sequence of filter and sort-by elements. The
filter elements define the fields that will appear in the CUE search panel's filter. The sort-by
elements define the options that will be provided by the CUE search results sort menu.

In addition, the search-filter element may also contain:

• A single ui:panel element specifying the ID of the CUE panel in which the the search page is to be
displayed. This should only be included in the main filter used for CUE's default search pane, and
it must then always be set to cue-search-sidepanel.

• A single default-term element specifying a series of terms that will always be included when
searching with this search filter. This should never be included in the main filter used for
CUE's default search pane, only in search filters that are intended to be used in dashboards. The
default-term element makes it possible to "specialize" the results returned by the search filter.
Specifying a default-term value of +state:draft, for example, ensures that only draft content
items are found, no matter what other filters the user sets in CUE.

For more detailed information about search filter definitions, see search-filter.

4.5.2 Indexing Fields

You can only use a field for filtering or sorting search results if it is indexed in the Content Store's Solr
schema. Here are some of the most important fields that are indexed by default.

activatedate
activepublishdate
ancestorsection
author
author_username_s
contenttype
creationdate
creator
expiredate
firstpublishdate
home_section
home_section_name
last_edited_by
lastmodifieddate
org_unit
publication
publication_type
publishdate
section
section_uniquename
source
sourceid
state
state_facet

Copyright © 2018-2022 Stibo DX A/S Page 65

http://docs.escenic.com/ece-resource-ref/7.14/search_filter.html

CUE Content Store Publication Design Guide

For a more complete description of the default schema, including a list of how content-dependent
index fields are generated, see What Gets Indexed. Or you can examine the schema itself, which you
will find in the /etc/escenic/solr/solr-core/schema.xml folder on your Content Store host.

If you want to index additional fields so that you can search their contents and use them for filtering
and sorting, then you can do so by editing the Solr schema. To index an enumeration field called
story_type, for example, you might add an entry like this to the schema:

<field name="story_type_enum" type="string" indexed="true" stored="true"
 omitNorms="true"/>

To make the indexed field appear as a facet in your search filter, you need to do as follows:

• Include a facet element in the filter definition:

<filter name="story_type">
 <ui:label>Story type</ui:label>
 <facet field="story_type_enum"/>
</filter>

• Add a property to the /com/escenic/webservice/search/RelationTypes.properties
configuration file in one of the Content Store's configuration layers:

STORY_TYPE_ENUM=story_type_enum

For general information about the the Content Store's configuration layers and how to work with
them, see Configuring The Content Store.

You have to be careful using facets: using facets on the wrong fields can have an adverse affect on
search performance. For more information about this (and general advice on search optimization, see
Search Optimization.

For more information about customizing the index schema, see Customizing the Index Schema.

4.6 Dashboard Definitions
CUE dashboards are defined in in XML files, one per file. One sample dashboard definition is supplied
in the Content Store starter pack: contrib/starter-pack/dashboard/dashboard.xml. You can
use it as a starting point for your own dashboard definitions.

To make your own dashboard:

1. First create one or more custom search filters on which to base your dashboard (see section 4.5).

2. Copy contrib/starter-pack/dashboard/dashboard.xml to a new file.

3. Make the required changes to the copied file (see below).

4. Upload the modified file to the Content Store as described in Upload a Resource.

4.6.1 Editing a Dashboard Definition

A dashboard definition resource is an XML file with the following basic structure:

<?xml version="1.0" encoding="UTF-8"?>
<dashboard
 xmlns="http://xmlns.escenic.com/2020/dashboard"

Copyright © 2018-2022 Stibo DX A/S Page 66

http://docs.escenic.com/ece-advanced-temp-dev-guide/7.14/what_gets_indexed.html
http://docs.escenic.com/ece-server-admin-guide/7.14/configuring_the_content_engine.html
http://docs.escenic.com/ece-server-admin-guide/7.14/search_optimization.html
http://docs.escenic.com/ece-server-admin-guide/7.14/customizing_the_index_schema.html
http://docs.escenic.com/ece-server-admin-guide/7.14/upload_resources.html

CUE Content Store Publication Design Guide

 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="dashboard-name">

 <ui:label>dashboard-label</ui:label>
 <ui:icon>dashboard-icon</ui:icon>

 <ref-search-filter name="search-filter-name">
 <ui:label>search-filter-label</ui:label>
 </ref-search-filter>
</dashboard>

All you need to do is set the following values correctly:

dashboard-name
The internal name of the dashboard (used as part of its URL). It must be unique among all
dashboards you create. For example, my-dashboard.

dashboard-label
The name of the dashboard as you want it to appear in CUE.

dashboard-icon
The name or URL of the icon you want to represent this dashboard in CUE. For example text,
or http://my-company-server/icons/my-icon.png. For more information about the
use of the ui:icon element, see icon.

search-filter-name
The name of a search filter to be used in this dashboard. Note that the name of a search filter
is the name specified inside the search filter resource file, not the name given to it when it is
uploaded to the Content Store (although they may well be identical). For example, drafts.

search-filter-label
The name of a search filter as you want it to appear in CUE. For example Drafts. If you omit
the ui:label element, then the search filter name will be used as a label.

You can include as many ref-search-filter elements as you want, allowing you to define
dashboards containing several custom searches. You can also optionally include the following
additional elements:

<?xml version="1.0" encoding="UTF-8"?>
<dashboard
 xmlns="http://xmlns.escenic.com/2020/dashboard"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 name="dashboard-name">

 <ui:label>dashboard-label</ui:label>
 <ui:icon>dashboard-icon</ui:icon>

 <required-capability>capability-name</required-capability>
 <update-interval>interval</update-interval>

 <ref-search-filter name="search-filter-name">
 <ui:label>search-filter-label</ui:label>
 </ref-search-filter>
</dashboard>

The required-capability element (if specified) must contain the name of a CUE capability.
A capability is a string representing a unit of CUE functionality that can be enabled or disabled for
individual users. If you include a required-capability element in a dashboard definition, then the

Copyright © 2018-2022 Stibo DX A/S Page 67

http://docs.escenic.com/ece-resource-ref/7.14/ih_icon.html

CUE Content Store Publication Design Guide

dashboard is only available to users who "have" the specified capability. A user "has" a capability if that
capability is enabled for the user or its owning user group. If no required-capability element is
specified, then the dashboard is made available to all CUE users.

The update-interval element (if specified) must contain an interval specified in seconds. It
determines how frequently the dashboard's search results are updated. It is specified in seconds. If the
element is omitted, then CUE's default interval of 30 seconds is used.

For a complete description of the dashboard resource format, see http://docs.escenic.com/ece-
resource-ref/7.14/dashboard.html.

4.7 Capability Definitions
A capability represent a CUE user interface component and its associated functionality. A capability
can be enabled or disabled for individual users or groups of users. By default, CUE / CUE Content
Store are delivered with a standard set of capabilities that represent all the standard CUE sidepanels
and metadatapanels. This means that CUE can be configured to deny some users (such as bloggers and
freelance journalists, for example) access to certain side panels and metadata data panels. Capabilities
are enabled / disabled when creating and editing user definitions in Web Studio. For details, see
Editing Users and Persons.

The default capabilities are sufficient for controlling access to a standard CUE installation. If however,
you extend CUE by adding your own web components, then you may wish to control access to
these additions as well, and to be able to do that you need to create and upload your own capability
definition resources.

Here is a very simple capability definition file:

<?xml version="1.0" encoding="UTF-8"?>
<capabilities xmlns="http://xmlns.escenic.com/2020/capability"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">

 <capability-group name="myextension">
 <ui:label>My extension</ui:label>
 </capability-group>

 <capability name="my.sidepanel.myextension" ref-capability-group="myextension">
 <ui:label>My extension side panel</ui:label>
 <ui:description>My extension side panel</ui:description>
 <ui:value-if-unset>true</ui:value-if-unset>
 </capability>
 <capability name="my.metadata.myextension" ref-capability-group="myextension">
 <ui:label>My extension metadata panel</ui:label>
 <ui:description>My extension metadata panel</ui:description>
 <ui:value-if-unset>true</ui:value-if-unset>
 </capability>
</capabilities>

This file creates two capabilities, one for a custom side panel component and one for a custom
metadata panel component. The name attributes must match the capability names specified in the
configurations of the CUE web components you have created (see the CUE User Guide for details).
You are free to name capabilities as you choose, but you should take care to avoid the names of the
default capabilities delivered with CUE. The default capabilities all have names that start with either

Copyright © 2018-2022 Stibo DX A/S Page 68

http://docs.escenic.com/ece-resource-ref/7.14/dashboard.html
http://docs.escenic.com/ece-resource-ref/7.14/dashboard.html
http://docs.escenic.com/ece-pub-admin-guide/7.14/editing_users_and_persons.html

CUE Content Store Publication Design Guide

cue.sidepanel, cue.metadata or cue.search, so you can easily avoid name clashes by using
your own prefix instead of cue.

You can control the capabilities' labels in Web Studio with the ui:label elements, and their default
settings with the ui:value-if-unset elements.

The capability capability-group element at the start of the file groups together the capabilities
that reference it. Since all three capabilities reference the same group, they are displayed as a group in
Web Studio and can be enabled / disabled either as a group or individually.

You can actually create a hierarchy of capability groups, making it possible for the Web Studio user to
enable and disable groups at different levels:

<?xml version="1.0" encoding="UTF-8"?>
<capabilities xmlns="http://xmlns.escenic.com/2020/capability"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">

 <capability-group name="myextension">
 <ui:label>My extension</ui:label>
 <capability-group name="mypanels">
 <ui:label>My panels</ui:label>
 </capability-group>
 </capability-group>

 <capability name="my.sidepanel.myextension" ref-capability-group="mypanels">
 <ui:label>My extension side panel</ui:label>
 <ui:description>My extension side panel</ui:description>
 <ui:value-if-unset>true</ui:value-if-unset>
 </capability>
 <capability name="my.metadata.myextension" ref-capability-group="mypanels">
 <ui:label>My extension metadata panel</ui:label>
 <ui:description>My extension metadata panel</ui:description>
 <ui:value-if-unset>true</ui:value-if-unset>
 </capability>
</capabilities>

You will find the default capability definitions in the Content Store starter pack installation-root/
contrib/starter-pack/capabilities/cue-defaults.xml. These capabilities are already
defined, so you cannot remove any of them. You can, however, change the default capabilities by
editing this file in the following ways and uploading your modified version:

• Change or translate the labels of capabilities and capability groups

• Change the default values (ui:value-if-unset) of capabilities and capability groups

• Reorganize the group structure (thereby changing the layout / structure in Web Studio).

In general it is recommended that you create one or more separate capability files for your own web
components. You can, however add them to default capability groups defined in cue-defaults.xml
if you wish. For example:

 ...
 <capability name="my.sidepanel.myextension" ref-capability-group="cue-side-panel">
 <ui:label>My extension side panel</ui:label>
 <ui:description>My extension side panel</ui:description>
 <ui:value-if-unset>true</ui:value-if-unset>
 </capability>
 ...

Copyright © 2018-2022 Stibo DX A/S Page 69

CUE Content Store Publication Design Guide

4.8 Custom Role Definitions
A role represents a type of CUE user such as a journalist, reader or editor. The purpose of roles is to
carry a set of access rights or permissions. When a CUE user is assigned a role, he is granted all the
permissions associated with that role. A user can be assigned multiple roles, and will then be granted
the sum of all the permissions carried by the assigned roles. Roles are assigned to users when creating
and editing user definitions in Web Studio. For details, see Editing Users and Persons.

A standard set of roles is supplied with CUE that are likely to meet most requirements. Should you
need to create an additional role, you can do so by creating and uploading a role definitions as a shared
resource. You will find the default role definitions in the Content Store starter pack's roles folder
(installation-root/contrib/starter-pack/roles/). An easy way to create a new role is to copy
one of these and modify it. You can also modify the supplied roles to match your corporate procedures
if required.

Here is the content of the supplied journalist role definition:

<role xmlns="http://xmlns.escenic.com/2020/role"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 type="section" name="journalist">
 <ui:label>Journalist</ui:label>
 <permission type="user">
 <action>read</action>
 </permission>
 <permission type="person">
 <action>create</action>
 <action>delete</action>
 <action>read</action>
 <action>write</action>
 </permission>
 <permission type="publication">
 <action>read</action>
 </permission>
 <permission type="usergroup">
 <action>read</action>
 </permission>
 <permission type="pool">
 <action>add_to_inbox</action>
 <action>remove_from_inbox</action>
 <action>read</action>
 </permission>
 <permission type="section">
 <action>read</action>
 </permission>
</role>

Note that this role provides permissions for all the objects that make up a publication except
for content items. There is in fact a permission type for content items (<permission
type="article">), but it is not used much because content item permissions are primarily
associated with roles in workflow definitions (see section 4.4). This allows a user's content item
permissions to depend on content item state.

For a detailed description of the role definition resource format, see role.

Copyright © 2018-2022 Stibo DX A/S Page 70

http://docs.escenic.com/ece-pub-admin-guide/7.14/editing_users_and_persons.html
http://docs.escenic.com/ece-resource-ref/7.14/role.html

CUE Content Store Publication Design Guide

4.9 Custom Content Card Definitions
Custom content card definitions can be used to create customized layouts for the content cards that
CUE uses to represent content items in lists (search results lists, for example). CUE has a standard
content card layout that is used if nothing else is specified, so you only need to upload content card
definitions if the standard layout does not meet your requirements.

A custom content card definition can only be used to define what items of information appear on the
cards and where they appear. You cannot use it to change the graphical appearance of the cards. A
content card has four modifiable areas: title, summary, date and thumbnail, and all you can
change is what appears in them. You cannot change their size, shape, colour or position.

4.9.1 Content Card Definition Format

This is what a content card definition looks like:

?xml version="1.0" encoding="UTF-8"?>
<content-card xmlns="http://xmlns.stibodx.com/2020/content-card" name="story">
 <field name="title">
 <template>{% if item.containerSlug is defined %}{{ item.containerSlug }}{%
 else %}{{ item.title }}{% endif %}</template>
 </field>

 <field name="summary">
 <template>{{ item.summary }}</template>
 </field>

 <field name="date">
 <template>{{ item.creationDate | date("D j M Y")}}</template>
 </field>
</content-card>

Its root element is called content-card, and must have a name attribute. It may contain between
one and three field elements, each defining the content of a modifiable area on the card:

title
The title area at the top of the card.

summary
The card's main area.

date
The date area in the bottom right corner of the card.

You do not have to supply all three field elements: any area for which you don't supply a definition
will get the default content.

Each field element must contain a single template element containing a Twig template. This
template defines the content to be displayed in this area of the card.

For a formal description of the content-card definition format, see content-card

4.9.2 Twig Template Processing

The Twig templates in the content card definitions are processed by CUE. When rendering the
templates, CUE has access to a set of values provided as properties of an object called item. The label

Copyright © 2018-2022 Stibo DX A/S Page 71

https://twig.symfony.com/
http://docs.escenic.com/ece-resource-ref/7.14/content_card.html

CUE Content Store Publication Design Guide

of a content item's owning publication, for example can be included in one of the content card areas by
including the following Twig code in the relevant template:

{{ item.homePublicationLabel }}

For a complete description of Twig syntax, visit the Twig web site.

Note that CUE does not render the output from the Twig templates as HTML, it just inserts it as a
string in the appropriate area of the content card. Therefore you cannot format output by including
HTML code in the templates: if you do this, the HTML code will be passed straight through and
displayed in the content card.

The item object provides the following properties for use in the Twig templates:

title
The content item title. This is the value displayed in the title area by default. When a content
card is displayed in a section page or relation area, the local summary title will be used if
defined.

originalTitle
The content item title. In this case, the original title defined in the content item itself is always
used, even on content cards displayed in section pages and relation areas.

label
The label of the content item's type. This property is only present if the content type has been
defined with a label.

summary
The content item summary. This is the value displayed in the summary area by default.

activePublishedDate
The content item's "active/published" date, in the format YYYY-MM-DDThh:mm:ssTZD (e.g.
2020-08-14T12:41:30+02:00). This date is either the date and time at which the content
item was/will be activated (if an activate date has been set) or the user-editable published date.

publishedDate
The content item's "published" date, in the format YYYY-MM-DDThh:mm:ssTZD (e.g.
2020-08-14T12:41:30+02:00).

lastModifiedDate
The content item's "last modified" date, in the format YYYY-MM-DDThh:mm:ssTZD (e.g.
2020-08-14T12:41:30+02:00).

creationDate
The content item's "creation" date, in the format YYYY-MM-DDThh:mm:ssTZD (e.g.
2020-08-14T12:41:30+02:00).

dateStr
Either the content item's "last modified" date or its "creation" date (depending on how CUE is
configured). The date is presented in "human readable" format date (e.g. Today at 12:56
PM). This is the value shown in the date area by default.

author
The full name of the content item's first author.

state
The label of the content item's current state (e.g. Published).

containerSlug
The slug field of the content item's container (storyline stories only).

Copyright © 2018-2022 Stibo DX A/S Page 72

https://twig.symfony.com/

CUE Content Store Publication Design Guide

homePublication
The title of the content item's home publication (e.g. tomorrow-online).

homePublicationLabel
The label of the content item's home publication (e.g. Tomorrow Online).

section
The name of the content item's home section (e.g. New Articles)

values
An object containing additional content item values. All content item fields that are returned as
search results are available in the values object. You can therefore add any missing fields you
need by adding the attribute search="store" to the field's definition in the content-type
resource. To add a content item's subtitle field to the values object, for example, you would
need to change the field's definition as follows:

<content-type ...>
 ...
 <field mime-type="text/plain" type="basic" name="subtitle" search="store">
 ...
 </field>
 ...
</content-type>

Note that you will need to include the subtitle field in the content item's summary definition
in order to ensure that it is available for content cards displayed on section pages and relation
drop zones as well for content cards displayed in search lists etc. If you don't want the
subtitle field to actually appear in your summaries, you can achieve that by using the
ui:hidden element to hide it.

<content-type ...>
 ...
 <field mime-type="text/plain" type="basic" name="subtitle" search="store">
 ...
 </field>
 ...
 <summary>
 ...
 <field mime-type="text/plain" type="basic" name="subtitle">
 <ui:hidden/>
 </field>
 </summary>
</content-type>

You do not need to repeat the search="store" attribute when adding the subtitle field to
the summary.

4.9.3 Using Content Card Definitions

You can upload as many content card definitions as you like, each in its own file. The uploaded
definitions are not used unless they are explicitly requested. To use a content card definition you must
add a ui:content-card element to a content type definition, as a child of the root content-type
element:

<content-type name="storyline">
 <ui:content-card>story</ui:content-card>
 ...
</content-type>

Copyright © 2018-2022 Stibo DX A/S Page 73

CUE Content Store Publication Design Guide

The specified content card definition will then be used for content items of that type (but not for any
other types).

4.9.4 Controlling Content Card Thumbnail Selection

You can determine where CUE looks for images to display as thumbnails in content cards by adding
parameter elements like this to the content-type definitions in the content-type resource:

<content-type name="storyline">
 <parameter name="com.escenic.index.thumbnail.order"
 value="relations:top, relations, storyline"/>
 ...
</content-type>

The name of the parameter must be com.escenic.index.thumbnail.order and its value must be
a comma-separated list containing one or more of the following keywords:

relations
inline
storyline

The relations keyword may be followed by a colon-separated parameter. The parameter must be
the name of a relation type. In the above example it is top.

CUE will look for images in the specified locations, in the order specified, and use the first image it
finds as the content item thumbnail. In the example given above, for example, CUE will first look in the
content item's relation group top for an image, and if it doesn't find one there, it will look in the rest of
the item's relations, and finally it will look in the storyline.

Copyright © 2018-2022 Stibo DX A/S Page 74

CUE Content Store Publication Design Guide

5 The layout-group Resource

The layout-group publication resource defines the logical structure of the layouts available for use
on a publication's section pages.

The following sections provide an introduction to the layout-group resource, and some of the things
it is used for. For a full, formal description of the layout-group resource format and all the things
you can do with it, see here.

5.1 Defining Section Page Layouts
A section page in the CUE publication model is a "front page" for a publication section: it displays
links and teasers to the most recent/interesting/relevant content in the section. Links and teasers
can be placed on a section page in two different ways: they can be automatically selected by means of
queries defined in the presentation layer, or they can be manually placed (or desked) on the section
pages by editorial staff.

The section page layouts defined in the layout-group resource define the structure displayed in
CUE to support manual placement of teasers on section pages. This means that if your publication
front end is designed to manage all selection and placement of content automatically, then you don't
need to worry about the layout-group resource at all, as it will not be used. Most organizations want
to exercise some manual control over the placement of content on their publications' section pages,
however, so you will most likely need to edit your layout-group resource.

5.1.1 Controlling Page Structure

Depending on how much control editorial staff are allowed over the details of section page layout, the
structure defined in the layout-group resource may either be very close to the physical layout of
section pages, with area/group names that reflect rows, columns of different widths, page positions
and so on, or may not reflect the layout at all and have area/group names that just reflect logical
categories ("Top stories", "Features" and so on).

Whichever "style" you use, there is no automatic, direct relationship between the structure you define
in the layout-group resource and the pages displayed on the web site: what gets displayed on
the site is determined by the presentation layer software and how it chooses to interpret the layout
information provided to it. The layout-group structure provides a mechanism by which editorial
staff can, to a greater or lesser degree, specify layout requirements. The presentation layer software is
then responsible for interpreting those requirements and producing the final pages.

The root element of the layout-group resource must be a groups element, which may contain one
or more child group elements. A group may contain one or more area elements. The groups and
areas are displayed as nested rectangles on CUE section pages, the areas being drop zones for stories.
Editorial staff desk stories on a section page in CUE by dropping them in the areas of their choice.

Areas can contain references to groups, allowing the CUE user to build complex nesting structures
representing multi-column layouts if required.

Here is a very simple layout-group that defines just two areas, one called Top story and one called
Main stories:

Copyright © 2018-2022 Stibo DX A/S Page 75

http://docs.escenic.com/ece-resource-ref/7.14/layout_group.html

CUE Content Store Publication Design Guide

<groups xmlns="http://xmlns.escenic.com/2008/layout-group"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
 <group name="front" root="true">
 <area name="top">
 <ui:label>Top story</ui:label>
 </area>
 <area name="main">
 <ui:label>Main stories</ui:label>
 </area>
 </group>
</groups>

The group element's root="true" attribute indicates that this is a root layout group - that is, a
group that defines an entire section page layout. group elements without this attribute are only used
if they are referenced in an area element.

If the groups element contains more than one group element with root="true" set, then these
groups represent alternative page layouts, and the CUE user can select which layout is to be used
on a particular section page. This choice is made using the Current layout option displayed in the
General info section of the CUE metadata panel.

area elements can be given labels using the ui:label element, in the same way as panels and
fields can be labelled in the content-type resource. If specified, these labels are used in CUE.
If no label is specified for an area, then CUE uses its name attribute instead. Since the label
element belongs to the interface-hints namespace rather than the layout-group namespace,
the name must include a prefix declared on the groups root element (xmlns:ui="http://
xmlns.escenic.com/2008/interface-hints" in the example shown above).

CUE users can desk whatever content they like in the Top story and Main stories areas. You can,
however, limit the allowed content types for an area by adding an allow-content-types element:

<groups xmlns="http://xmlns.escenic.com/2008/layout-group"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
 <group name="front" root="true">
 <area name="top">
 <ui:label>Top story</ui:label>
 <allow-content-types>
 <ref-content-type-group name="content"/>
 </allow-content-types>
 </area>
 <area name="main">
 <ui:label>Main stories</ui:label>
 </area>
 </group>
 <content-type-group name="content">
 <ref-content-type name="story"/>
 <ref-content-type name="video"/>
 </content-type-group>
</groups>

Now CUE will only allow content types specified in the content-type-group called content to be
dropped in the Top story area.

The following example shows a more complex section page design in which the area names indicate
something about their location on the page:

Copyright © 2018-2022 Stibo DX A/S Page 76

CUE Content Store Publication Design Guide

<groups xmlns="http://xmlns.escenic.com/2008/layout-group"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
 <group name="main" root="true">
 <ui:label>Main stories</ui:label>
 <area name="top">
 <ui:label>Top</ui:label>
 </area>
 <area name="rightcolumn">
 <ui:label>Right Column</ui:label>
 </area>
 <area name="center">
 <ui:label>Center Column</ui:label>
 <ref-group name="two-col"/>
 <ref-group name="three-col"/>
 </area>
 </group>
 <group name="two-col">
 <area name="left"/>
 <area name="right"/>
 </group>
 <group name="three-col">
 <area name="left"/>
 <area name="center"/>
 <area name="right"/>
 </group>
</groups>

If an area contains ref-group, elements, this indicates that it may contain subdivisions (the
children of the referenced groups). The CUE user can insert the referenced groups into the area by
right-clicking on the area and selecting the required group from the displayed menu. In the case of the
Center Column area in the above example, the user can insert two-col and three-col groups as well
as (or instead of) desking content items in the area. The user can insert any number of such groups
into the area, in any combination.

5.1.2 Group, Area and Teaser Options

Both group elements and area elements can have options associated with them, defined in a child
options element:

 <area name="main">
 <ui:label>Main stories</ui:label>
 <ct:options scope="current">
 <ct:field name="teaserStyle" type="enumeration">
 <ui:label>Teaser Style</ui:label>
 <ct:enumeration value="default">
 <ui:label>Default</ui:label>
 </ct:enumeration>
 <ct:enumeration value="breakingNews">
 <ui:label>Breaking News</ui:label>
 </ct:enumeration>
 <ui:value-if-unset>default</ui:value-if-unset>
 </ct:field>
 </ct:options>
 </area>

Copyright © 2018-2022 Stibo DX A/S Page 77

CUE Content Store Publication Design Guide

An options element that is a child of an area element can have a scope attribute, the purpose
of which is to specify whether the options belong to the area itself (scope="current" as in the
example above) or to the individual content items desked in the area (scope="items"), in which case
they are referred to as teaser options rather than area options.

Options are displayed in the right hand panel when a group, area or desked content item is selected
in CUE, allowing the CUE user to make choices about how the selected component is to be presented.
Exactly how such choices are interpreted and the effect they have on layout is determined in the
presentation layer.

The options element is not actually a member of the layout-group namespace, it is "borrowed"
from the content-type namespace. If you use this element, therefore, its name must include a prefix
declared on the groups root element, as follows:

<groups xmlns="http://xmlns.escenic.com/2008/layout-group"
 xmlns:ct="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
...
</groups>

Copyright © 2018-2022 Stibo DX A/S Page 78

CUE Content Store Publication Design Guide

6 The feature Resource

Unlike the other publication resources, the feature resource is not an XML file. It is a plain text file
containing a series of simple property settings like this:

allowFrontPageAsHomeSection=true

All the property settings consist of a single keyword=value pair like the one above, and modify the
behavior of the publication in some way. For a full, formal description of the feature resource format
and all the things you can do with it, see feature.

Copyright © 2018-2022 Stibo DX A/S Page 79

http://docs.escenic.com/ece-resource-ref/7.14/feature.html

CUE Content Store Publication Design Guide

7 The interface-hints Namespace

You have probably noticed that the resource file examples in chapter 3 and chapter 5 contain some
elements with the prefix ui:. These elements are user interface hints, and the ui: prefix identifies
them as belonging to the http://xmlns.escenic.com/2008/interface-hints namespace.

If you look at the syntax diagrams for the content-type and content-type resources you will see that
many of them include the placeholder ANY-FOREIGN-ELEMENT. This placeholder is used to indicate
that an element can contain elements from any foreign namespace, but is primarily intended to
indicate that you can insert elements from the interface-hints namespace.

Use of the interface-hints elements is entirely optional - you can create a working content-
type or layout-group resource without using them. By using them, however, you can create a more
user-friendly interface for your publication in CUE.

The following sections discuss the use of some of the most frequently used interface-hints
elements. For full details about all elements in this namespace, see interface-hints.

7.1 label
The interface-hints element you will probably make most use of is label. By default, CUE
generates labels for user interface components from the name attribute of the resource file elements
they are based on, by simply capitalizing the first letter of the name. A field element called title in
the content-type resource, for example, will result in the field label Title in CUE. If, however, you
want the field to be called Headline in CUE, then you can achieve this by adding a ui:label element
as follows:

<field type="basic" name="title">
 <ui:label>Headline</ui:label>
</field>

The other important function of the label element is to enable multilingual user interfaces. An element
can have several child label elements, each with a different xml:lang attribute identifying its
language. For example:

<field type="basic" name="title">
 <ui:label xml:lang="fr">Titre</ui:label>
 <ui:label xml:lang="de">Titel</ui:label>
</field>

7.2 value-if-unset
This is a very useful element that you can use to specify default values for fields:

<field type="uri" name="homepage">
 <ui:value-if-unset>http://www.escenic.com/</ui:value-if-unset>
</field>

Copyright © 2018-2022 Stibo DX A/S Page 80

http://docs.escenic.com/ece-resource-ref/7.14/content-type.html
http://docs.escenic.com/ece-resource-ref/7.14/layout-group.html
http://docs.escenic.com/ece-resource-ref/7.14/interface_hints.html

CUE Content Store Publication Design Guide

7.3 style
You can use the style element to control the appearance of content in CUE, both in the rich text
fields of Escenic legacy stories and in the story element types used in native CUE stories.

7.3.1 Styling Rich Text Fields

The style element lets you style the rich text fields in Escenic legacy stories using CSS. You can put
any standard CSS in the body of the element, giving you detailed control over the appearance and
layout of rich text field content in CUE. To set the color of h1 and h2 headings in a field, for example,
you could specify:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:style>
 h1 {color:red}
 h2 {color:green}
 </ui:style>
</field>

You can also use this element to style in-line relations so that CUE users can easily distinguish between
relations to different content types. To do this, you must create CSS classes with names of the form:

escenic-content-type-name

To make in-line links to news content items green and in-line links to blog content items red, for
example, you could specify:

<field mime-type="application/xhtml+xml" type="basic" name="body">
 <ui:style>
 .escenic-news { color: green;}
 .escenic-blog {color: red;}
 </ui:style>
</field>

The style element can only be used with basic fields where mime-type is set to
application/xhtml+xml. It has no effect if used with any other elements.

For hints and examples about more advanced uses of the style element, see style.

7.3.2 Styling Story Element Types

The style element lets you style the story element types of native CUE stories using CSS. You can
put any standard CSS in the body of the element, giving you detailed control over the appearance and
layout of story elements in CUE. To set the font size of a heading story element type, for example, you
could enter:

<story-element-type
 name="headline"
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints">
 ...
 <ui:style>
 .story-element-headline [contenteditable='true'] {
 font-size: 2.3em;
 }
 </ui:style>

Copyright © 2018-2022 Stibo DX A/S Page 81

http://docs.escenic.com/ece-resource-ref/7.14/ih_style.html

CUE Content Store Publication Design Guide

</story-element-type>

You can use the following CSS class names to select different parts of the HTML generated for a story
element:

.story-element-name
where name is the name of the story element type. This selects the whole story element.

.fields
This selects all story element fields, so

.story-element-pull_quote .fields

will select all the fields in a pull_quote story element.

.field-name
where field-name is the name of a field in a story element. This selects the specific field, so:

.story-element-pull_quote .fields .quote

or

.story-element-pull_quote .quote

will select the quote field in a pull_quote story element.

You can also use the [contenteditable='true'] predicate to select only the editable content in a
field.

For a simple story element type, the hints given above may be enough to enable you to style elements
as required, but for more complicated cases, the best method is probably to wait with styling until you
have a working publication, and then use the following method:

1. Open the publication in CUE, using the Chrome browser.

2. Create a story content item, selecting a storyline that includes this story element type.

3. Insert a story element of this type.

4. Start the Chrome developer tools and display the Elements pane.

5. Locate the HTML code representing the story element.

6. Use the Chrome style editing functionality to get the appearance you want.

7. Copy the CSS you created back to a ui:style element in the story element type resource.

8. Upload the modified story element type resource to the server in the usual way (see Manage
Shared Resources)

9. Restart CUE and check the results.

You should thoroughly test your styling changes before committing them. In the worst case,
inappropriate styling can render fields unusable in CUE.

7.4 icon
This element lets you set the icons used in CUE to represent various objects such as content items,
story element types, publications, workflow states and dashboards. CUE provides a range of built-in
icons that you can specify by name:

Copyright © 2018-2022 Stibo DX A/S Page 82

http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html
http://docs.escenic.com/ece-server-admin-guide/7.14/manage_shared_resources.html

CUE Content Store Publication Design Guide

<ui:icon>news</ui:icon>

Alternatively you can specify various kinds of custom icons such as PNG images:

 <ui:icon>http://my-company-server/icons/custom-audio.png</ui:icon>

SVG drawings or Unicode characters.

The specific icon options available vary according to what kind of CUE object the icon is to represent.
For a detailed description of the options available in each context, see here.

7.5 macro
The macro element can be used to provide a means of inserting custom HTML code into the content
of a rich text field. If a rich text field definition in the content-type resource contains one or more
ui:macro elements, then a macro button is added to the rich text toolbar in CUE. Clicking this macro
button displays a drop-down menu containing one menu item for each ui:macro element. The
following macro definition, for example, inserts a placeholder for a fact box (to be replaced by the
presentation layer during page rendering):

<ui:macro name="insert-factbox">
 <ui:step action="insert" text="Fact box" wrap-element="eceplaceholder"
 class="factbox"/>
 <ui:keystroke>alt F</ui:keystroke>
 <ui:description>Insert fact box</ui:description>
</ui:macro>

7.6 tag-scheme
The tag-scheme element can be used to enable tagging for a particular content type. By default,
content types do not support tagging, and you enable it by adding tag-scheme elements to the
required content type definitions. Adding a ui:tag-scheme element to a content-type element
enables access to one tag structure. You can enable access to several tag structures by adding multiple
ui:tag-scheme elements.

For example:

<content-type name="story">
 <ui:tag-scheme>tag:concept@escenic.com,2017</ui:tag-scheme>
 <ui:tag-scheme>tag:location@escenic.com,2017</ui:tag-scheme>
 <ui:tag-scheme>tag:organization@escenic.com,2017</ui:tag-scheme>
 <ui:tag-scheme>tag:entity@escenic.com,2017</ui:tag-scheme>
 <ui:tag-scheme>tag:person@escenic.com,2017</ui:tag-scheme>
...
</content-type>

The content of a ui:tag-scheme element must be the scheme of one of the site's tag structures.
A tag structure scheme is a URI that uniquely identifies the tag structure. The schemes of all tag
structures defined on a Content Store site are listed on the escenic-admin application's tag
management page (see Manage Tag Structures).

Copyright © 2018-2022 Stibo DX A/S Page 83

http://docs.escenic.com/ece-resource-ref/7.14/ih_icon.html
http://docs.escenic.com/ece-server-admin-guide/7.14/manage_tag_structures.html

CUE Content Store Publication Design Guide

7.7 title-field
The title-field element is used for two purposes:

• To identify which of a content type's fields CUE is to be used as the internal title or slug. It is this
field that will be used as the "name" of content items in CUE:

<content-type name="story">
 <ui:title-field>slug</ui:title-field>
 ...
 <panel name="metadata">
 <field mime-type="text/plain" type="basic" name="slug">
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 </panel>
</content-type>

• To indicate that the content of a story element type may be used as a story title or slug. It is
typically used in the definition of a headline story element type, so that the headline entered when a
content item is first created becomes the slug used to identify it in CUE:

<story-element-type
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints" name="headline">
 <field name="headline" type="basic" mime-type="text/plain">
 </field>
 <ui:title-field/>
 ...
</story-element-type>

You can only specify this element as the child of a content-type or story-element-type
element: it is ignored in all other contexts.

Copyright © 2018-2022 Stibo DX A/S Page 84

