
CUE Live

User Guide
3.3.3-3

Table of Contents

1 Introduction.. 5

2 Using CUE Live... 6

2.1 Creating an Event...6

2.2 Blogging with CUE Live... 6

2.2.1 Adding Images...7

2.2.2 Adding Social Content...7

2.2.3 Pinning Entries.. 8

2.2.4 Tagging Entries... 8

2.2.5 Editing Entries... 9

2.2.6 Posting to Twitter.. 9

2.3 Including External Content... 9

2.3.1 Social Media Feeds...9

2.3.2 Video Stream...10

2.4 Event Settings.. 10

2.5 Editorial Controls in CUE Live..10

3 Installation.. 12

3.1 Conventions.. 12

3.2 Installing..13

3.3 Re-assembling Applications... 13

3.4 Verifying The Installation.. 13

3.5 Updating The Database Schema... 13

3.6 Upgrading... 14

3.7 CUE Plug-in Activation... 14

4 Configuration..15

4.1 CUE Live Configuration..15

4.1.1 General Settings..15

4.1.2 Back-end User Configuration.. 17

4.1.3 Twitter-related Configurations..18

4.1.4 Instagram Configuration.. 20

4.1.5 Pagination Configuration... 21

4.1.6 CORS Filter Configuration...22

4.2 SSE Proxy Configuration..24

4.3 Content Type Definition..24

4.3.1 Special Event Definition Fields..24

4.3.2 Example Content Type Definition..28

4.4 The entry-type Resource..30

4.4.1 Enabling Tags..30

4.4.2 Controlling Field Visibility.. 30

4.4.3 Special CUE Live Elements.. 31

4.4.4 entry-type Parameters... 32

4.4.5 Example entry-type Resource... 33

4.5 Cache Configuration... 34

4.5.1 Entry Cache...34

4.5.2 Change Log Caches... 35

4.6 Third-Party Authentication.. 36

5 Embedding External Content...38

5.1 Enabling Instagram Embeds.. 38

5.2 Creating an oEmbed Request Handler.. 39

5.3 Creating a Custom oEmbed Request Handler...39

5.4 Creating an Open Graph Request Handler..41

5.5 Creating a Custom Open Graph Request Handler.. 42

5.6 Register Request Handlers.. 43

6 Auto-Tagging Entries... 44

6.1 Configuring the Auto-Tagging Transaction Filters..44

6.1.1 Enabling Use of BooleanAutoLabelingTransactionFilter... 45

6.1.2 Adding New Social Media Services to EmbedAutoLabelingTransactionFilter......... 45

7 CUE Live Transaction Filters...47

7.1 Making A Transaction Filter... 47

7.2 Using a Transaction Filter.. 48

8 Publishing Events.. 49

8.1 livecenter-presentation-js..49

8.1.1 Configuration... 52

9 Using The CUE Live Web Services.. 53

9.1 The Editorial Web Service..53

9.1.1 Retrieving an Entry..55

9.1.2 Changing an Entry.. 55

9.1.3 Creating an Entry.. 56

9.1.4 Deleting an Entry...57

9.2 The Presentation Web Service.. 57

9.2.1 Entry Fields... 59

9.2.2 Keeping the Event Page Up-to-Date...60

9.2.3 Retrieving Embedded Content.. 61

9.2.4 Retrieving Selected Entries... 62

CUE Live User Guide

1 Introduction

CUE Live is a liveblogging application based on the CUE Content Store and CUE. CUE Live extends the
CUE editor to provide bloggers, journalists and editors with a purpose-built, streamlined liveblogging
platform. Since CUE is a browser-based app, all you need to use it is a web-capable device – anything
from a laptop down to a smartphone – and a network connection.

CUE Live is designed to support continuous news coverage of events. An event can be a football
match, a royal wedding, a disaster, an election, a conference – something that is of limited duration
and of great interest to your public. An event is represented in CUE Live by a special type of content
item, also called Event. An Event content item consists of a reverse-chronological series of entries
containing updates about the event.

An event is published as a self-updating story: whenever a new entry is added to the event and
published, it is effectively pushed to all readers currently viewing the event; they do not need to
actively refresh the story. Since events are published in reverse-chronological order, the new entry
appears at the top of the event page.

Entries can contain pretty much anything: text, images, links, media clips, tweets and so on, and can
come from a variety of sources:

• Any CUE Live user working on the event

• Agency feeds

• Social platforms such as Twitter, Instagram and YouTube

The exact structure of an entry can vary from event to event, and you can configure your own entry
types. A football entry, for example, could have an "incident" field that can be set to "goal", "penalty",
"offside" and so on. An entry designed for an election event might have a "constituency" field for
specifying where the report is coming from.

Once CUE Live is installed and configured, it is very easy to use. Events are created and published in
exactly the same way as other content items. When an event is opened in CUE, its Live Editor tab
can be used to create and edit entries. Multiple contributors can open and work in the same event
simultaneously.

CUE Live is the new name for the CUE plug-in previously known as CUE Live Center. The primary
difference between CUE Live and CUE Live Center is that CUE Live is now an integrated part of the
CUE editor, rather than a stand-alone web application.

Copyright © 2015-2022 CCI Europe AS Page 5

http://en.wikipedia.org/wiki/Liveblogging

CUE Live User Guide

2 Using CUE Live

CUE Live is a plug-in or extension to the CUE editor, so to use it you simply log in to CUE in the
usual way and open or create an event. An event is just a special type of content item designed to be
used with CUE Live. It contains a special editor that you can use to create and edit blog entries. In
general, CUE Live is very straightforward to use, like the CUE editor itself, and does not require much
description. This section is intended to provide just enough information to get you started.

2.1 Creating an Event
To get started you need an event to work with. If the event already exists, then you just open it in the
same way as any other content item in CUE. If it doesn't already exist and you have sufficient rights,
then you can create an event in the same way as any other content item, by clicking on the + button in
the top left corner of the CUE window. When the Create new dialog is display, select Events from
the Search for other options drop-down, and then select the event type you want from the Choose
options from group drop-down. In the example shown below, there's only one event type to choose,
called Event:

You then need to fill a few fields in the event's Main tab as shown below. In particular note the Entry
type field – you may have several different types of entry to choose from as is the case here:

When you have filled out the Main tab, click the Save button in the bottom left corner. When you save
the new event, several new tabs are created, and the Live Editor tab is automatically displayed. You
can start creating entries straight away (see section 2.2), but you will probably want to set up the event
to support the inclusion of content from social media and other external sources first (see section 2.3),
and possibly change some of the event's settings (see section 2.4).

2.2 Blogging with CUE Live
To start blogging, select Live Editor. For a new event, the Live Editor tab is almost empty, but you'll
see a small entry editor at the bottom of the page:

The entry editor works more or less in the same way as an ordinary CUE content editor: fill in the
displayed fields with the content you want, and when you are satisfied with the content, select Save to
submit it for approval to your editor. Selecting Save will apparently cause the entry to just disappear,
but in fact it is submitted to the Live Inbox, a holding area for unpublished entries. You can display

the Live Inbox by selecting from the column of panel buttons on the left:

Copyright © 2015-2022 CCI Europe AS Page 6

CUE Live User Guide

The entry in the editor shown above only contains one field, because all the other entry fields are

hidden. You can display the other fields and edit them by selecting the button:

The main entry field is usually a rich text field as shown in the screenshots above, with a palette of
formatting buttons above it that you can use for simple text styling and the insertion of hyperlinks. As

well as formatting text you can drag in content from social media. Clicking on the button, for example,
will open a Twitter feed in the panel on the left, and from there you can drag a tweet into the rich text
field in the entry editor. You can add YouTube videos and RSS links to your entries in exactly the same
way.

If your editor approves of an entry you have submitted to the inbox, then she can publish it. It will then
be published online and also appear on the Live Editor page, in a list above the entry editor. Note
that this list of published entries is displayed in chronological order, with the most recent at the
bottom. This is most likely the opposite order to the published live blog, where it is normal to publish
entries in reverse chronological order.

2.2.1 Adding Images

You can post images by dragging image content items from the CUE search panel into an entry's rich
text field.

2.2.2 Adding Social Content

You can include content from social media such as Twitter, YouTube and so on in your entries. There
are two different ways of doing this:

• Directly from feeds displayed in CUE Live

• By means of embed codes

2.2.2.1 Using Social Media Feeds

An event can include social feeds of various kinds. Currently Twitter and YouTube feeds are supported,
in addition to generic RSS feeds. An event's feeds (if it has any) can be displayed using buttons

displayed in the column of panel buttons on the left. Clicking on the button, for example, displays a
panel containing a Twitter feed. If you see an item in the feed that you want to include in the event
blog, then you can do so by dragging it into a rich text field in the entry editor. You can then fill out any
other fields in the entry as required and Save it in the usual way.

The feeds available in an event will have been set up by the event designer – for details see section 2.1.

2.2.2.2 Using Embed Codes

You can also include content from social media services by inserting embed codes in an entry. You
can insert embed codes in any rich text field (that is, any field that displays a formatting palette). To
insert an embed code, select the </> button near the right hand end of the formatting palette, and
then paste the URL of the social media content you want to include in your entry into the displayed
dialog box. For a YouTube video, for example, you might enter something like:

https://www.youtube.com/watch?v=yVwAodrjZMY

Copyright © 2015-2022 CCI Europe AS Page 7

CUE Live User Guide

To insert the code, click on OK. The video then appears in your entry.

You can include several social media items in a single entry if you wish, along with your own content.

Note that all you need to enter in the URL field is the URL of the required content. You do not need
to get any special embed code from the social media site - the required code is constructed by CUE
Live's embed code function.

The delivered system includes full support for the following social media services:

• YouTube

• Vimeo

• Instagram

• Vine

• Twitter

However, many other sites are also supported via an open standard for embedding called Oembed.
There is a list of Oembed providers here. You should be able to embed content from any of the sites in
this list.

For information about how to add full embed code support for additional sites and services, see
chapter 5.

2.2.3 Pinning Entries

Click on the button (on the bar at the bottom of the Live Editor) to pin an entry or make it "sticky".
A sticky entry is typically displayed permanently at the top of the published event feed. Unlike an
ordinary entry, it will not be pushed down the feed as new entries are added. Sticky entries are marked
with a pin in CUE Live:

and displayed permanently at the bottom of the published entries list.

2.2.4 Tagging Entries

Some events have taggable entries, in which case a button is displayed on the bar at the bottom of the

Live Editor. To tag the entry you are editing, click on the button and select a tag from the displayed
list. You can add as many tags as you like in this way.

To remove a tag from an entry, click on its x button.

How tags are displayed in the published blog is determined by your publication designers.

For information about how you make entries taggable, see section 4.4.1.

2.2.4.1 Auto Tagging

CUE Live can be set up to auto-tag entries, in which case you may see that tags are added to your
entries without you doing anything. You can still add tags of your own in addition to those added by
the system. For more information about auto-tagging and how to set it up, see chapter 6.

Copyright © 2015-2022 CCI Europe AS Page 8

http://www.oembed.com/
http://oembed.com/#section7

CUE Live User Guide

2.2.5 Editing Entries

You can edit existing entries as long as they have not yet been published. To edit an entry, select to
open the Live Inbox panel, right-click or long-press the entry you are interested in and select Edit.
The entry is then moved back into the entry editor, where you can make changes to it. When you have
finished, select Update to save your changes. Note that you can edit any entries in the Live Inbox
panel, not just ones that you created yourself.

2.2.6 Posting to Twitter

The entries in some events may have a "post to Twitter" button () displayed on the bar at the bottom
of the Live Editor. If select this button while editing an entry, then the entry is marked with a Twitter
icon, and when it is published, it is also simultaneously posted to Twitter, using a predefined account.

To cancel your selection, just select the button a second time.

2.3 Including External Content
It is important to be able to easily include content from external source such as social media in a live
blog. You can easily set up a CUE Live event to enable streamlined inclusion of content from a wide
range of social media platforms. You can also set it up to include external video feeds. There are three
different ways of enabling the inclusion of external content:

• Social media feeds

• Video streams

2.3.1 Social Media Feeds

You can define social media searches related to the subject of your event, and display the search results
in CUE Live. Once you have set up such searches, the results can be displayed as real-time feeds,
allowing you to monitor content related to your event, and easily drag interesting posts from the feeds
into your blog entries.

To define such a search:

1. Select External Content.

2. Select the + button under Subscriptions.

3. Select the social media service you are interested in from the Subscriptions pull-down.

4. Enter the string you want to search for in the Query field. Exactly which services are available
will depend on how CUE Live has been configured (section 4.1.1). You can search for hashtags,
users and free text in Twitter. For all other services only free text searches are supported.

5. Select Save.

You can add as many different searches as you want in this way.

To view the resulting feeds, select one of the social feed buttons on the left - the Twitter button (), for
example.

Copyright © 2015-2022 CCI Europe AS Page 9

CUE Live User Guide

2.3.2 Video Stream

You can also add a live video stream to an event. The video stream is not displayed in the CUE Live
webapp, but can be displayed in the published live blog if your publication has been configured to
support it.

To add a video stream:

1. Select External Content.

2. Select the + button under Video Stream.

3. Fill in the displayed fields:

Mime type
The MIME type of the video stream

URL
The URL of the video stream

4. If required, click the + button again and repeat. The purpose of the + button in this case is not to
allow the addition of many different video streams, but to allow the addition of different versions
of the same stream, for display on different devices.

5. Select Save.

2.4 Event Settings
An event has only two settings:

Disable event
Check this option to disable or conclude an event. The event will then have the status
Concluded in CUE Live. Concluded events cannot be edited. A concluded event remains
published however, so it is still accessible on your web site.

Clear author field on submit
By default, the Author field in event entries is persistent: if you set it when you submit an
entry, then your choice is remembered and applied to any subsequent entries you add, until
you explicitly change it or clear it. Check this option if you would prefer the Author field to be
cleared every time an entry is submitted.

2.5 Editorial Controls in CUE Live
If you have editor access rights then you can carry out all the editing operations described in section
2.2, but you can also do a few other things as well:

Publish your entries immediately
If you create an entry as a user with editor access rights, then instead of submitting it for
approval, you can just publish it: a Publish button is displayed next to the Submit button.

Publish entries from the Live Inbox
Right-click/long press any entry displayed in the Live Inbox panel and select Publish from the
displayed menu to publish it.

Copyright © 2015-2022 CCI Europe AS Page 10

CUE Live User Guide

Edit published entries
As an editor, you can change entries after they have been published. Right-click/long press any
entry displayed in the published entries list and select Edit from the displayed menu. Make your
changes in the entry editor and click on Update to save them.

Delete entries
To delete an entry, right-click/long press on it and select Delete from the displayed menu. Note
that deleted entries are not physically deleted, simply marked as deleted. They are still displayed
in the published entry list and / or inbox panel, but are grayed out.

Copyright © 2015-2022 CCI Europe AS Page 11

CUE Live User Guide

3 Installation

The following preconditions must be met before you can install CUE Live 3.3.3-3:

• CUE Content Store version 7.15.0-11 and CUE assembly tool have been installed as described in the
CUE Content Store Installation Guide and are in working order.

• The CUE editor has been installed and as described in the CUE User Guide and configured to work
with the Content Store installation.

• You have the credentials needed to access CCI Europe's SW repositories.

In the following instructions, the following placeholders are used in some paths:

Placeholder Path

engine-installation /usr/share/escenic/escenic-content-
engine-3.3.3-3

assemblytool_installation /usr/share/escenic/escenic-
assemblytool

In a multiple-server environment:

• CUE Live must be installed on all servers.

• The CUE event mechanism must be working correctly.

After installing CUE Live you must also activate CUE's CUE Live plugin. For details, see section 3.7.

3.1 Conventions
The Content Engine and the software it depends on may be installed on one or several host machines
depending on the type of installation required. In order to unambiguously identify the machines on
which various installation actions must be carried out, the CUE Content Store Installation Guide
defines a set of special host names that are used throughout the manual.

Some of these names are also used here:

assembly-host
The machine used to assemble the various Content Store components into an enterprise archive
or .EAR file.

engine-host
The machine(s) used to host application servers and Content Store instances.

editorial-host
engine-host(s) that are used solely for (internal) editorial purposes.

The host names always appear in a bold typeface. If you are installing everything on one host you can,
of course, ignore them: you can just do everything on the same machine. If you are creating a larger
multi-host installation, then they should help ensure that you do things in the right places.

Copyright © 2015-2022 CCI Europe AS Page 12

http://docs.escenic.com/ece-install-guide/7.15/
http://docs.escenic.com/cue-user-guide/2.2
http://docs.escenic.com/ece-install-guide/7.15/

CUE Live User Guide

3.2 Installing
To install CUE Live on an Ubuntu or other Debian-based system, do the following on your assembly-
host and on each of your engine-hosts:

1. Log in as root.

2. If necessary, add the CUE apt repository to your list of sources:

echo "deb http://user:password@apt.escenic.com stable main non-free" >> /etc/
apt/sources.list.d/escenic.list

where user and password are your CUE download credentials (the same ones you use to access
the CUE Maven repository). If you do not have any download credentials, please contact CUE
support.

3. Enter the following commands:

apt-get update
apt-get install escenic-live

On RedHat systems, enter the following command as root on your assembly-host and each of your
engine-hosts:

rpm -Uvh https://user:password:yum.escenic.com/rpm /escenic-live-version.x86_64.rpm

where version is the correct version number of the package.

3.3 Re-assembling Applications
After installation, you may need to reassemble your web applications. You only need to reassemble if
your installation includes some old-style JSP-based Escenic publications.

3.4 Verifying The Installation
To verify the status of CUE Live, open the CUE Admin web application (usually located at
http://server/admin) and click on View installed plugins. The status of all currently installed
plug-ins is shown here, and indicated as follows:

The plug-in is correctly installed.

The plug-in is not correctly installed.

3.5 Updating The Database Schema
CUE Live needs some additions to be made to the Content Store database schema. The scripts needed
to make the required additions are included in the misc/database/ folder of the distribution. There
are two sets of scripts, one for MySql databases, in misc/database/mysql, and one for Oracle
databases in misc/database/oracle. There are four scripts in each folder:

Copyright © 2015-2022 CCI Europe AS Page 13

mailto:support@escenic.com
mailto:support@escenic.com

CUE Live User Guide

• constants.sql

• constraints.sql

• indexes.sql

• tables.sql

To run the scripts:

1. Log in as escenic on your database-host.

2. Copy or unpack the appropriate scripts for your database to an appropriate location (for example
/tmp/live/misc/database/mysql).

3. Run the scripts as follows

• For MySql:

$ cd /tmp/live/misc/database/mysql/
$ for el in tables.sql indexes.sql constants.sql constraints.sql; do \
 mysql -u ece-user -pece-password -h dbhost db-name < $el
 done;

replacing db-name, dbhost, ece-user and ece-password with the correct values for your database.

3.6 Upgrading
To upgrade CUE Live:

1. Read the release notes for your planned upgrade. Make a note of any special tasks that need to be
carried out in connection with the upgrades.

2. Log in as root on your assembly-host and on each of your engine-hosts, and enter the
following commands:

apt-get update
apt-get upgrade

3. Carry out any required upgrade tasks.

3.7 CUE Plug-in Activation
In order to be able to make use of CUE Live functionality in CUE you need to activate CUE's CUE Live
plug-in. The plug-in is installed together with CUE itself, it just needs to be activated. To do this, you
need to:

1. Log in as root on the host on which your CUE editor is installed.

2. Copy /etc/escenic/cue-web-x.y.z/public/Live.yml to a new file for editing.

3. Remove the # comment character from all lines in the copied file.

4. Save your changes.

5. Enter the following command to reconfigure CUE with the new settings:

dpkg-reconfigure cue-web-x.y

Copyright © 2015-2022 CCI Europe AS Page 14

CUE Live User Guide

4 Configuration

After installing CUE Live (see chapter 3) you need to configure it to meet your requirements. This
involves the following tasks:

• Configure CUE Live itself

• For each publication in which you want to publish live events:

• Add an event content type definition to your publication content-type resource

• Create an entry-type publication resource (an additional resource required by CUE Live) and
upload it to your publication

4.1 CUE Live Configuration
This set-up task consists of copying example configuration files from the CUE Live installation into the
Content Store common configuration layer (if necessary) and then modifying the copied files to meet
your requirements. In detail, you must:

1. Log in to your Content Store host as the escenic user.

2. This step is only required if you installed CUE Live using the old-style installation method. If
you installed it using the new package-based method, then the required configuration files will
already have been installed in /etc/escenic/engine/common/com.

Copy all the supplied common configuration layer files as follows:

$ cp -r engine-installation/plugins/live/misc/siteconfig/com/escenic \
> /etc/escenic/engine/common/com

If you installed CUE Live using the new package-based installation method, then this step is
not required: the configuration file are automatically installed in the correct location.

3. Edit the copied files as described in the following sections.

4.1.1 General Settings

Open /etc/escenic/engine/common/com/escenic/livecenter/
Configuration.properties for editing and set the following properties:

autoPopulateAuthors
If set to true (the default), then when a CUE Live webapp user creates an entry, his name is
automatically added to the entry's Authors field. If set to false, then this does not happen.
The user's name is always added to the entry's Creator field, irrespective of how this property
is set.

webserviceUri
The name of the CUE Content Store web service (not the CUE Live web service). The default
setting is /webservice, which will work if the web service is running on the same host as
CUE Live, and if it has been deployed with the default name webservice. If the service has
been renamed then you will need to set this property accordingly. If the service is running on a
different host then you will need to specify the service's absolute URL.

Copyright © 2015-2022 CCI Europe AS Page 15

CUE Live User Guide

editorialWebserviceUri
The URI of the CUE Content Store editorial web service. The URI must be specified as an
absolute URI even if it is deployed on the same host as CUE Live. The default setting is http://
localhost:8080/live-center-editorial. This setting will work if:

• The editorial web service is running on the same host as CUE Live

• The editorial web service has been deployed with the default name live-center-
editorial

• The host IP address is mapped to localhost (usually the case)

If any of these conditions are not met, then you need to set this property with the correct
absolute URL.

twitterAPIKey
The API key CUE Live is to use for connecting to Twitter (so that events can be configured to
monitor Twitter for relevant tweets). The value of this key can be found in the "Keys and Access
tokens" tab in your Twitter settings. If defined, then twitterAPISecret must also be defined.

twitterAPISecret
The API secret CUE Live is to use for connecting to Twitter. The value of this secret can be found
in the "Keys and Access tokens" tab in your Twitter settings. If defined, then twitterAPIKey
must also be defined.

googleApiKey
The Google API key for CUE Live is to use for connecting to Google. To obtain a googleApiKey
you need to follow the following steps.

• You need a Google Account to access the Google Developers Console, request an API key, and
register your application.

• Go to the Google Developers Console.

• Select a project, or create a new one.

• In the sidebar on the left, expand APIs & auth. Next, click APIs. In the list of APIs, make sure
the status is ON for the YouTube Data API v3.

• In the sidebar on the left, select Credentials.

• The API supports two types of credentials. For CUE Live we will use API key. After
selecting API key choose Server key. Then use create to generate the key.

For details of how to create api key visit Obtaining authorization credentials

presentationWebserviceUri
The URI of the CUE Live Presentation web service. The default setting is /live-center-
presentation-webservice, which will work if the presentation web service is running on
the same host as CUE Live, and if it has been deployed with the default name live-center-
presentation-webservice. If the service has been renamed then you will need to set this
property accordingly. If the service is running on a different host then you will need to specify
the service's absolute URL.

twitterProfiles
A comma-separated list of references to Twitter profiles that may be used for posting entries
to Twitter (not for monitoring - see twitterApiKey and twitterApiSecret above). Each
referenced Twitter profile must be defined in its own .properties file. If, for example, you
specified:

twitterProfiles=./client/DefaultTwitterProfile,./client/
JournalistTwitterProfile,./client/EditorTwitterProfile

Copyright © 2015-2022 CCI Europe AS Page 16

https://console.developers.google.com/
https://developers.google.com/youtube/registering_an_application

CUE Live User Guide

then you would also need to create three corresponding properties files
in the client subfolder: DefaultTwitterProfile.properties,
JournalistTwitterProfile.properties and EditorTwitterProfile.properties.
For further information about this, see section 4.1.3.1.

presentationSseProxyUri
Set this property to enable Server-sent Events (SSE) in the presentation layer. SSE is always
used for communication between CUE and the editorial web service, but it is only used in the
presentation layer if you enable it by setting this property. You must set it to the URI of the SSE
Proxy to be used by the presentation layer. For example:

http://my-cuelive-presentation-proxy/

4.1.2 Back-end User Configuration

Certain CUE Live functions need a back-end user to have been set up. The back-end user is a standard
CUE user with a high level of access (at least section editor privileges for all sections and write access
for all content types). CUE Live uses the back-end user to publish:

• Images submitted by CUE Live users without publishing rights

• Entries created from trusted Twitter account tweets

If you do not configure a back-end user, then users with journalist roles will not be able to upload
images, so for most installations this is a required configuration.

You can either set up a common back-end user for all publications, or one back-end user for each
publication.

To set up a common back-end user, open /etc/escenic/engine/common/com/escenic/
livecenter/BackendUser.properties for editing and set the following properties:

userName
The user name of your back-end user. The user must have at least section editor rights and write
access for all content types.

password
The back-end user's password.

To set up separate back-end users for each of your publications:

1. Make several copies of /etc/escenic/engine/common/com/escenic/livecenter/
BackendUser.properties, one for each publication, and name them accordingly. For
example:

DailyNewsBackendUser.properties
WeeklyGossipBackendUser.properties

2. Set the required username and password properties in each file.

Copyright © 2015-2022 CCI Europe AS Page 17

CUE Live User Guide

3. Open /etc/escenic/engine/common/com/escenic/livecenter/
PublicationWiseBackendUser.properties for editing and set a backendUsers property
of the form

backendUsers.publicationName=configuration

for each publication, where configuration references one of the BackendUser configurations you
created in step 1. For example:

backendUsers.DailyNews=./DailyNewsBackendUser
backendUsers.WeeklyGossip=./WeeklyGossipBackendUser

4.1.3 Twitter-related Configurations

CUE Live can make use of Twitter in a number of different ways, which makes the configuration
options related to Twitter potentially confusing. The different ways in which Twitter can be used are:

Twitter monitoring
To set up CUE Live to support Twitter monitoring, you simply need to set the twitterAPIKey
and twitterAPISecret properties in Configuration.properties, as described in section
4.1.1. CUE Live then logs in to the specified Twitter account and events can be configured to
monitor Twitter for relevant tweets, and the user can drag tweets into entries as described in
section 2.2.2.1.

Posting entries to Twitter
If you want users to be able to post CUE Live entries to Twitter, then you can enable this
functionality by creating Twitter profiles. A Twitter profile is defined in a .properties
file as described in section 4.1.3.1. You also need to select the Twitter profile to use for posting
to Twitter when defining your events in CUE (see section 2.1) and specify which entry fields
to use by adding com.escenic.live-center.content-type.field.twitter-tweet
parameters to the required entry definitions (see section 4.4.4.1).

When CUE Live posts an entry to a Twitter account, it appends a pingback URL to the tweet. For
details of how to control the format of the URL, see section 4.1.3.2.

4.1.3.1 Creating Twitter Profiles

A Twitter profile contains details of a Twitter account that can be used by CUE Live. You can define a
number of different Twitter profiles, each connected to a different Twitter account.

Twitter profiles can be used for two different purposes:

Posting to Twitter
Events can be defined to include a Post to Twitter (section 2.2.6) option. When defining such an
event in CUE, you can choose which profile is to be used for this purpose. (see section 2.1). If the
CUE Live user checks this option when submitting an entry, then the entry will be posted to the
Twitter account defined in the profile you selected.

To create Twitter profiles:

1. Copy or rename /etc/escenic/engine/common/com/escenic/livecenter/
client/SampleTwitterProfile.properties, to the required number of files,
giving the files suitable names. You might, for example, create three profiles called
DefaultTwitterProfile.properties, JournalistTwitterProfile.properties and

Copyright © 2015-2022 CCI Europe AS Page 18

CUE Live User Guide

EditorTwitterProfile.properties. All these files can reside in the same com/escenic/
livecenter/client folder.

2. Open each file for editing and set the following properties:

profileName
The name of the profile. This name will appear as an option when users create new events
in CUE.

twitterAPIKey
The API key of the account CUE Live is to use for posting to Twitter when this profile is
selected. See section 4.1.3.1.1 for details of how to obtain this value.

twitterAPISecret
The API secret of the same Twitter account. See section 4.1.3.1.1 for details of how to obtain
this value.

twitterAccessToken
The access token of the same Twitter account. See section 4.1.3.1.1 for details of how to
obtain this value.

twitterAccessTokenSecret
The access token secret of the same Twitter account. See section 4.1.3.1.1 for details of how
to obtain this value.

3. Each profile you added in step 2 must be referenced in the twitterProfiles property in
Configuration.properties, as described in section 4.1.1. Once you have added these
configurations, then you can enable posting to Twitter by adding a com.escenic.live-
center.content-type.field.twitter-profile parameter and corresponding field to the
event definition in your publication content-type resource as described in section 4.3.1.5 and
adding a "post to Twitter" option to the relevant entry definitions as described in section 4.4.3.2.

4.1.3.1.1 Getting Twitter Account Credentials

In order to get the access credentials you need to create a Twitter profile (twitterAPIKey,
twitterAPISecret, twitterAccessToken and twitterAccessTokenSecret) you must log
in to Twitter as the appropriate user, create a Twitter application using the Twitter development
console (https://dev.twitter.com) and then generate an access token. In detail:

1. Open a browser window.

2. Log in to Twitter.

3. Go to https://dev.twitter.com/apps/new.

4. Fill in all required fields in the displayed form and click the Create your Twitter application
button.

5. A new application page is displayed. Display the Keys and Access Tokens tab.

6. Click the Create my access token button at the bottom of the page.

You should now have everything you need to create a profile displayed on this page: the
Consumer Key and Consumer Secret fields hold the values for the twitterAPIKey and
twitterAPISecret properties, and the Access Token and Access Token Secret fields hold the
values for the twitterAccessToken and twitterAccessTokenSecret properties.

Copyright © 2015-2022 CCI Europe AS Page 19

https://dev.twitter.com
https://dev.twitter.com/apps/new

CUE Live User Guide

4.1.3.2 Controlling the Pingback URL Format

When CUE Live posts an entry to a Twitter account, it appends a pingback URL to the tweet. By
default, this is the URL of the entry's parent event. You can, however, configure CUE Live to append an
entry-specific URL instead. You can choose both the kind of entry ID used, and how to include it in the
URL (as a parameter or as a fragment ID).

To add an entry ID to the pingback URL:

1. Open /etc/escenic/engine/common/com/escenic/livecenter/social/filter/
PostToTwitterTransactionFilter.properties for editing and set the following
properties as required:

entryIdentifierFormat
Determines the method used to include the entry ID in the pingback URL:

entryIdentifierFormat=parameter-name={entry-id}

where parameter-name is the name you want to use for the parameter (entry, for
example).

entryIdentifierGenerator
Specifies the generator that is to generate unique IDs for the entries:

entryIdentifierGenerator=./UUIDBasedEntryIdentifierGenerator

UUIDBasedEntryIdentifierGenerator is the default ID generator supplied with CUE
Live.

4.1.4 Instagram Configuration

In order to be able to set up Instagram feeds in CUE Live you must first register your CUE Live
installation as an Instagram client application, in order to get an Instagram client ID. The general
procedure for doing this is described in the Instagram developer documentation. The specific values
you need to specify when registering a CUE Live installation are:

Application Name
Any name you like that complies with Instagram's requirements.

Description
Your choice.

Company Name
The name of your company/organization.

Website URL
You can enter any valid URL here. It doesn't actually need to be the URL of anything related to
your CUE Live installation.

Valid redirect URIs
This must be a URI of the form:

editorial-webapp-url/thirdparty/authenticate/index.html

where editorial-webapp-url is the URL specified as the editorialWebAppUrl property in
Configuration.properties (see section 4.1.1). If, for example, editorialWebAppUrl has
the default value http://ip-address:8080/ , then you must specify:

http://ip-address:8080/live-center/thirdparty/authenticate/index.html

Copyright © 2015-2022 CCI Europe AS Page 20

https://www.instagram.com/developer/

CUE Live User Guide

here, where ip-address is the IP address of your CUE Live host (that is, the IP address
referenced by localhost).

Privacy Policy URL
You can leave this field blank.

Contact email
A suitable contact email address (your own, for example).

Disable implicit OAuth (on the Security tab)
Make sure this option is not checked.

Enforce signed requests (on the Security tab)
Make sure this option is not checked.

Once you have completed the Instagram registration and obtained a client ID for your CUE Live
installation, ppen /etc/escenic/engine/common/com/escenic/livecenter/social/auth/
InstagramAuthConfigProvider.properties for editing and set params.client_id to the
client ID you have obtained from Instagram.

4.1.5 Pagination Configuration

You can control how many entries are displayed at a time by setting pagination properties. There are
two such properties: one for controlling page length in the CUE Live editor, and one for controlling
page length in publications.

4.1.5.1 CUE Live Editor Pagination

To control how many entries are displayed at a time in the CUE Live editor:

1. Copy EntryResourceHelper.properties from the CUE Live installation into your webapp
configuration layer (not the common configuration layer):

$ mkdir -p /etc/escenic/engine/webapp/live-center-editorial/com/escenic/
livecenter/webapp/helpers
$ cp engine-installation/plugins/live/misc/siteconfig/webapp/com/escenic/
livecenter/webapp/helpers/EntryResourceHelper.properties \
> /etc/escenic/engine/webapp/live-center-editorial/com/escenic/livecenter/webapp/
helpers/EntryResourceHelper.properties

2. Open the copied file for editing and set the following property as required:

entryListSize
Determines how many entries are returned at a time by the editorial web service, and
therefore how many entries are displayed on a page.

entryListSize = 20

4.1.5.2 Presentation Layer Pagination

To control how many entries are displayed at a time in a publication:

1. Copy PublishedEntryResourceHelper.properties from the CUE Live installation into
your webapp configuration layer:

$ cp engine-installation/plugins/live/misc/siteconfig/webapp/com/escenic/
livecenter/presentation/webservice/helpers/PublishedEntryResourceHelper.properties
 \

Copyright © 2015-2022 CCI Europe AS Page 21

CUE Live User Guide

> /etc/escenic/engine/webapp/pub-name/com/escenic/livecenter/presentation/
webservice/helpers/PublishedEntryResourceHelper.properties

where pub-name is the name of your publication webapp.

2. Open the copied file for editing and set the following property as required:

entrySize
Determines how many entries are returned at a time by the presentation web service, and
therefore how many entries are displayed on a page.

entrySize = 20

4.1.6 CORS Filter Configuration

For security reasons, browsers commonly apply a same-origin restriction to network requests that
prevent a web application running in one domain from retrieving data from other domains. CORS
(Cross-Origin Resource Sharing) is a mechanism for circumventing this restriction in a secure way.
If your CUE Live presentation web service is deployed in a different domain from the CUE Live
web application then it will not be able to access any data unless you explicitly give it permission by
configuring the CUE Live CORS filter.

The CORS mechanism is based on the concept of a pre-flight request. Before making a cross-
domain request, a browser first sends a pre-flight request to find out what kinds of requests the host
will respond to. The host then returns a pre-flight response in which it specifies which domains it will
accept requests from, and what kinds of requests (which HTTP methods, headers and so on) it will
respond to. The CUE Live CORS filter allows you to specify what is returned in CUE Live pre-flight
responses.

To configure the CORS filter:

1. Copy CorsFilter.properties from the CUE Live installation into your webapp
configuration layer (not the common configuration layer):

$ cp engine-installation/plugins/live/misc/siteconfig/com/escenic/livecenter/
presentation/filter/cors/CorsFilter.properties \
> /etc/escenic/engine/webapp/live-center-presentation-webservice/com/escenic/
livecenter/presentation/filter/cors/CorsFilter.properties

2. Open the copied CorsFilter.properties for editing and set the following properties:

allowedOrigins
A comma-separated list of origins that are to be granted access to CUE Live resources.
An origin is a URL protocol identifier plus a domain name (for example http://
www.w3.org or https://www.apache.org. The default setting of * grants access to all

Copyright © 2015-2022 CCI Europe AS Page 22

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

CUE Live User Guide

domains. In order to restrict access to your presentation web service only, specify the web
service's origin. For example:

allowedOrigins=https://mypresentationdomain.com

If you wish more than one presentation web service to be able to access CUE Live
resources, then you can specify several origins:

allowedOrigins=https://mypresentationdomain.com,http://myotherdomain.org

allowedHttpMethods
A comma-separated list of HTTP methods such as GET and POST that can be used to
access resources. The specified methods are returned in the pre-flight response's Access-
Control-Allow-Methods header.

The default setting is:

allowedHttpMethods=GET,POST,HEAD,OPTIONS

allowedHttpHeaders
A comma-separated list of HTTP request headers such as Origin and Accept that can
be used in cross-origin requests. The specified headers are returned in the pre-flight
response's Access-Control-Allow-Headers header.

The default setting is:

allowedHttpHeaders=Origin,Accept,X-Requested-With,Content-Type,Access-
Control-Request-Method,Access-Control-Request-Headers

exposedHeaders
A comma-separated list of HTTP response headers that may be exposed to the browser.
The specified headers are returned in the pre-flight response's Access-Control-
Expose-Headers header.

There is no default setting for this parameter.

supportsCredentials
A flag indicating whether or not user credentials are supported. It helps browser to
determine whether or not a request can be made using credentials.

The default setting is true.

preflightMaxAge
The number of seconds for which the browser is allowed to cache the result of a CORS
pre-flight request. The specified value is returned in the pre-flight response's Access-
Control-Max-Age header. Specifying a negative value prevents the CORS filter from
including an Access-Control-Max-Age header in the pre-flight response.

The default setting is 1800.

decorateRequest
A flag specifying whether or not CORS-specific attributes are to be added to the
HttpServletRequest object.

The default setting is true.

Copyright © 2015-2022 CCI Europe AS Page 23

CUE Live User Guide

4.2 SSE Proxy Configuration
The CUE editor communicates with the Content Store via an SSE proxy. In order to support this
communication the SSE proxy is configured with a URL (http://editorial.example.com/
webservice/escenic/changelog/sse, for example) and credentials allowing it to access the
Content Store web service's SSE change log. The CUE Live plug-in, however, has its own change logs
for broadcasting SSE events: an editorial change log for communicating with CUE, and a presentation
change log that can be used by read-only client applications.

You therefore need to reconfigure your SSE proxy after installing CUE Live and add URL and
credentials for the following additional SSE change logs:

http://host-ip-address/live-center-editorial/changelogSSE
The URL of the editorial SSE change log.

http://host-ip-address/live-center-presentation-webservice/changelogSSE
The URL of the presentation SSE change log.

Note that you may have set up multiple SSE proxies for different purposes, so these settings might
need to be added to different proxies.

4.3 Content Type Definition
In order to be able to use CUE Live, you need to add a suitably configured event content type to your
publication's content-type resource. For general information about the content-type resource
and how to edit it, see the CUE Content Store Resource Reference.

An event content type needs to contain the following special elements:

• A parameter element with the name com.escenic.live-center.content-type and the value
true:

<parameter name="com.escenic.live-center.content-type" value="true"/>

This element identifies the content type as a CUE Live event.

• A ui:decorator element with the name com.escenic.livecenter.LiveEventDecorator

<ui:decorator name="com.escenic.livecenter.LiveEventDecorator" />

• A ui:list-style element containing the string event.

<ui:list-style>event</ui:list-style>

• A field element with the name livecenter. You can control the visibility of the field with the
<ui:visibility/> element (see section 4.4.2).

• Six parameters identifying fields in the content type that are used by CUE Live for special purposes.
These parameters and their associated fields are described in section 4.3.1.

4.3.1 Special Event Definition Fields

An event content type can contain a number of special fields for controlling CUE Live functionality.
They are identified by means of a content type parameter that points to the field. These fields and
parameters are described in the following sections.

Copyright © 2015-2022 CCI Europe AS Page 24

http://docs.escenic.com/sse-proxy.html
http://docs.escenic.com/ece-resource-ref/7.15/

CUE Live User Guide

4.3.1.1 com.escenic.live-center.content-type.field.entry-type

An event content type must contain an entry type field, so that users can select the type of entry an
event is to contain. The field is identified by including a com.escenic.live-center.content-
type.field.entry-type parameter in the event content type and setting it to point to the entry
type field.

The entry type field itself:

• Must contain a child entry-type element, belonging to the http://
xmlns.escenic.com/2015/live-center namespace (which is usually given the namespace
prefix cue-live).

• Must be defined as a collection field, and configured to retrieve content from CUE Live's entry-
types web service.

<content-type name="event" xmlns:livecenter="http://xmlns.escenic.com/2015/live-
center">
 ...
 <parameter name="com.escenic.live-center.content-type.field.entry-type"
 value="entryType"/>
 <ui:list-style>event</ui:list-style>
 ...
 <panel name="main">
 ...
 <field id="entryType" mime-type="text/plain" name="entryType" select="content"
 src="/webservice/escenic/livecenter/publication/{publication}/entry-types"
 type="collection">
 <ui:label>Entry type</ui:label>
 <cue-live:entry-type />
 <ui:description>The entry type to use for this event</ui:description>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 ...
 </panel>
 ...
</content-type>

4.3.1.2 com.escenic.live-center.content-type.field.visibility-in-editor

If you want to be able to disable events by rendering them invisible in the CUE Live editor, then you
can do so by including a com.escenic.live-center.content-type.field.visibility-in-
editor parameter in the event content type and setting it to point to a boolean field as follows:

<content-type name="event">
 ...
 <parameter name="com.escenic.live-center.content-type.field.visibility-in-editor"
 value="disabledEvent"/>
 <ui:list-style>event</ui:list-style>
 ...
 <panel name="main">
 ...
 <field name="disabledEvent" type="boolean">
 </field>
 ...
 </panel>

Copyright © 2015-2022 CCI Europe AS Page 25

CUE Live User Guide

 ...
</content-type>

An event can then be disabled by checking its disabledEvent option (see section 2.1).

4.3.1.3 com.escenic.live-center.content-type.field.clear-author-field-on-submit

If you want to be able to control the persistence of author settings in events, then you can do so by
including a com.escenic.live-center.content-type.field.clear-author-field-on-
submit parameter in the event content type and setting it to point to a boolean field as follows:

<content-type name="event">
 ...
 <parameter name="com.escenic.live-center.content-type.field.clear-author-field-on-
submit" value="clearAuthor"/>
 <ui:list-style>event</ui:list-style>
 ...
 <panel name="main">
 ...
 <field name="clearAuthor" type="boolean">
 </field>
 ...
 </panel>
 ...
</content-type>

It will then be possible to determine whether author field selections made in the CUE Live editor
are persistent or the author field is cleared after an entry is submtted by checking/unchecking the
clearAuthor option (see section 2.1).

4.3.1.4 com.escenic.live-center.content-type.field.subscription

In order to be able to include social media feeds in your event you must include a
com.escenic.live-center.content-type.field.subscription parameter in the event
content type and set it to point to a complex field as follows:

<content-type name="event">
 ...
 <parameter name="com.escenic.live-center.content-type.field.subscription"
 value="subscriptions"/>
 <ui:list-style>event</ui:list-style>
 ...
 <panel name="main">
 ...
 <field name="subscriptions" type="complex">
 <required>false</required>
 <array default="0"/>
 <complex>
 <field type="enumeration" name="source">
 <enumeration value="twitter"/>
 <enumeration value="rss"/>
 <enumeration value="youtube"/>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="query">
 <constraints>

Copyright © 2015-2022 CCI Europe AS Page 26

CUE Live User Guide

 <required>true</required>
 </constraints>
 </field>
 </complex>
 </field>
 ...
 </panel>
 ...
</content-type>

The complex field must be defined exactly as shown above (although you can omit enumerations for
any service you do not wish to support). It is then possible to select the feeds to be displayed in an
event by making selections in the subscriptions field (see (section 2.1)).

4.3.1.5 com.escenic.live-center.content-type.field.twitter-profile

In order to be able to post CUE Live entries to Twitter, include social media feeds in your event
you must include a com.escenic.live-center.content-type.field.twitter-profile
parameter in the event content type and set it to point to an enumeration field as follows:

<content-type name="event">
 ...
 <parameter name="com.escenic.live-center.content-type.field.twitter-profile"
 value="twitterprofile"/>
 <ui:list-style>event</ui:list-style>
 ...
 <panel name="main">
 ...
 <field type="enumeration" name="twitterprofile">
 <ui:label>Twitter Profiles</ui:label>
 <enumeration value="default">
 <ui:label>Default</ui:label>
 </enumeration>
 <enumeration value="escenic">
 <ui:label>Escenic</ui:label>
 </enumeration>
 </field>
 ...
 </panel>
 ...
</content-type>

The values in the enumeration field must be the names of Twitter profiles defined as described in
section 4.1.3.1. It is then possible to select the Twitter profile that will be used for posting entries from
the twitterprofile field (see section 2.1).

An entry is only posted to the selected Twitter account if the CUE Live user checks a "Post to twitter"
option in the entry. Such an option must be included in the entry definition in order for posting to
Twitter to be possible. For details, see section 4.4.3.2.

4.3.1.6 com.escenic.live-center.content-type.field.video

If you want to be able to add a live video stream to your event, then you can do so by including a
com.escenic.live-center.content-type.field.video parameter in the event content type
and setting it to point to an array of complex fields as follows:

<content-type name="event">

Copyright © 2015-2022 CCI Europe AS Page 27

CUE Live User Guide

 ...
 <parameter name="com.escenic.live-center.content-type.field.video" value="video"/>
 <ui:list-style>event</ui:list-style>
 ...
 <panel name="main">
 ...
 <field name="video" type="complex">
 <array default="1"/>
 <complex>
 <field mime-type="text/plain" type="basic" name="mime-type">
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="url">
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 </complex>
 </field>
 ...
 </panel>
 ...
</content-type>

You can then add a video stream to your event using the video option (see section 2.1).

4.3.2 Example Content Type Definition

The following listing shows a complete event content type definition from which unnecessary elements
such as labels have been removed:

<content-type name="event" xmlns:livecenter="http://xmlns.escenic.com/2015/live-
center">
 <ui:title-field>title</ui:title-field>
 <ui:decorator name="com.escenic.livecenter.LiveEventDecorator" />
 <parameter name="com.escenic.live-center.content-type.field.entry-type"
 value="entryType"/>
 <parameter name="com.escenic.live-center.content-type" value="true"/>
 <parameter name="com.escenic.live-center.content-type.field.visibility-in-editor"
 value="disabledEvent"/>
 <parameter name="com.escenic.live-center.content-type.field.clear-author-field-on-
submit" value="clearAuthor"/>
 <parameter name="com.escenic.live-center.content-type.field.subscription"
 value="subscriptions"/>
 <parameter name="com.escenic.live-center.content-type.field.twitter-profile"
 value="twitterprofile"/>
 <parameter name="com.escenic.live-center.content-type.field.video" value="video"/>
 <parameter name="com.escenic.index.summary.fields" value="description"/>
 <panel name="main">
 <field name="title" type="basic" mime-type="text/plain"/>

 <field name="description" type="basic" mime-type="text/plain"/>

 <field id="entryType" mime-type="text/plain" name="entryType" select="content"
 src="/webservice/escenic/livecenter/publication/{publication}/entry-types"
 type="collection">
 <cue-live:entry-type />

Copyright © 2015-2022 CCI Europe AS Page 28

CUE Live User Guide

 <constraints>
 <required>true</required>
 </constraints>
 </field>

 <field name="disabledEvent" type="boolean"/>

 <field name="clearAuthor" type="boolean"/>

 <field name="subscriptions" type="complex">
 <required>false</required>
 <array default="0"/>
 <complex>
 <field type="enumeration" name="source">
 <enumeration value="twitter"/>
 <enumeration value="rss"/>
 <enumeration value="youtube"/>
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="query">
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 </complex>
 </field>

 <field name="video" type="complex">
 <array default="1"/>
 <complex>
 <field mime-type="text/plain" type="basic" name="mime-type">
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 <field mime-type="text/plain" type="basic" name="url">
 <constraints>
 <required>true</required>
 </constraints>
 </field>
 </complex>
 </field>
 <field name="livecenter" type="basic" mime-type="application/json">
 <ui:hidden/>
 </field>
 <field type="enumeration" name="twitterprofile">
 <enumeration value="default"/>
 <enumeration value="escenic"/>
 </field>
 </panel>
</content-type>

Copyright © 2015-2022 CCI Europe AS Page 29

CUE Live User Guide

4.4 The entry-type Resource
CUE Live requires an additional publication resource called entry-type. It is an XML resource
that defines the field structure of different CUE Live entry types in the same way as the content-
type resource defines the field structure of content types. It is in fact very similar to the content-
type resource, and uses the same elements and namespaces. It is, however, generally simpler than a
content-type resource since entries have simpler structures than content items.

For a description of the standard content-type resource format, see the CUE Content Store
Resource Reference. When you are creating an entry-type resource rather than a content-type
resource, then you need to take the following factors into account:

• Each content-type element defines a CUE Live entry type, not a content type.

• The panel element is required by content-type resource syntax, but has no meaning in CUE
Live. You should therefore create just one panel in each content-type element as a container
for all its field elements.

• Summary and relation-related elements such as summary, relation-type, relation-type-
group have no meaning in CUE Live and are ignored if present.

• The following field types are not supported by CUE Live and will be ignored if present:

collection
complex
schedule

• Some field elements may contain special CUE Live elements belonging to the http://
xmlns.escenic.com/2015/live-center namespace. For details see section 4.4.3.

• The entry-type resource may also contain parameter elements for special purposes. For details
see section 4.4.4.

4.4.1 Enabling Tags

To make an entry type taggable, all you need to do is add a ui:tag-scheme element to the entry
definition. The content of the tag must be the scheme (that is URI) of the tag structure to be used for
tagging entries. For example:

<ui:tag-scheme>tag:livelabels@escenic.com,2015</ui:tag-scheme>

For general information about tagging in CUE and tag scheme definition, see Manage Tag Structures.

4.4.2 Controlling Field Visibility

You can control the visibility of entry fields in the CUE Live editor in the same way as you
control the visibility of content item fields, by adding ui:visibility elements (see http://
docservices.dev.escenic.com/ece-resource-ref/7.15/ih_visibility.html) to field definitions. The
ui:visibility values are used by CUE Live as described below:

hidden
Hidden completely.

expert or advanced
Not visible in the main entry editor. To view or edit these fields, the user must open a secondary

editor by selecting the button on the bar at the bottom of the Live Editor.

Copyright © 2015-2022 CCI Europe AS Page 30

http://docs.escenic.com/ece-resource-ref/7.15/content_type.html
http://docs.escenic.com/ece-resource-ref/7.15/content_type.html
http://docs.escenic.com/ece-server-admin-guide/7.15/manage_tag_structures.html
http://docservices.dev.escenic.com/ece-resource-ref/7.15/ih_visibility.html
http://docservices.dev.escenic.com/ece-resource-ref/7.15/ih_visibility.html

CUE Live User Guide

beginner
Always visible.

The default value if ui:visibility is not set is advanced.

4.4.3 Special CUE Live Elements

Some field elements may contain special CUE Live elements belonging either to the http://
xmlns.escenic.com/2015/live-center namespace (usually assigned the prefix cue-live) or
to the http://xmlns.escenic.com/2008/interface-hints namespace (usually assigned the
prefix ui). These special elements are described below:

4.4.3.1 The cue-live Element

Include this element in a field definition to ensure that it appears in the Live Inbox side panel and
published entry list. It is typically included in title, body, milestone, happening, and twitter-
post field definitions. For example:

<field mime-type="text/plain" type="basic" name="basic">
 <ui:label>Title</ui:label>
 <ui:cue-live>title</ui:cue-live>
</field>

4.4.3.2 The twitterPost Element

<field type="boolean" name="twitter-post">
 <cue-live:twitterPost responseFieldName="twitter-response"/>
 <ui:cue-live>twitter</ui:cue-live>
 <cue-live:entryShare />
</field>

This element is used to identify a Boolean field as a "share on Twitter" field. If the CUE Live user
checks this option when editing an entry, then when the entry is submitted it will also be automatically
posted to Twitter. The responseFieldName can be set to point to another field in the entry to which
the JSON response returned from Twitter can be written. This response field must a plain text field,
and should be marked with a twitterPostResponse (section 4.4.3.4) element.

Note that posting to Twitter will only work if CUE Live has been configured with Twitter profiles (see
section 4.1.3.1) and if the event containing the entry has been configured to use one of those profiles
(see section 4.3.1.5).

You should always include an entryShare element with a twitterPost element to enhance the
usability of the sharing option. For details see section 4.4.3.3.

4.4.3.3 The entryShare Element

<field type="boolean" name="twitter-post">
 <cue-live:twitterPost responseFieldName="twitter-response"/>
 <cue-live:entryShare />
 <ui:cue-live>twitter</ui:cue-live>
</field>

This element is used to identify a Boolean field as a sharing option. It adds sharing-related
functionality to social media sharing options: when the entry is published, a "spinner" icon is displayed

Copyright © 2015-2022 CCI Europe AS Page 31

CUE Live User Guide

while the entry is being submitted to the social service, and ensures that a success/failure message is
displayed. You should always include this element in the definition of any Boolean field used to define
a sharing option. (Currently, CUE Live only supports the creation of sharing options for Twitter, via
the twitterPost (section 4.4.3.2) element.)

4.4.3.4 The twitterPostResponse Element

<field mime-type="text/plain" type="basic" name="twitter-reponse">
 <cue-live:twitterPostResponse/>
</field>

This element is used to identify a plain text field as a "Twitter response" field. If an entry is submitted
to Twitter (by means of a twitterPost (section 4.4.3.2) element, then the JSON response
returned from Twitter can be written to a Twitter response field identified by the twitterPost
element's responseFieldName attribute. A Twitter response field can be useful for diagnostic
purposes but is usually configured to be hidden.

4.4.3.5 The milestone Element

<field type="boolean" name="milestone">
 <ui:label>Milestone</ui:label>
 <ui:description>Milestone</ui:description>
 <ui:visibility>expert</ui:visibility>
 <ui:cue-live>milestone</ui:cue-live>
 <cue-live:milestone/>
</field>

This element is used to identify a boolean field as a "Milestone" field. If the CUE Live user checks this
option when editing an entry, then entry will be marked as milestone entry.

4.4.4 entry-type Parameters

An entry-type resource may contain the following parameter elements.

4.4.4.1 com.escenic.live-center.content-type.field.twitter-tweet

This parameter is used to identify the entry field that will be posted to Twitter when Post to Twitter
is selected in the CUE Live editor. The parameter element must be inserted as the child of a
content-type element, and its value attribute must contain the name of a field belonging to the
content-type element (that is, the entry type definition). The content of the specified field will then
be posted to Twitter. The chosen field must be a plain text field (that is, it must have type="basic"
and mime-type="text/plain"). For example:

<content-type name="generic">
 ...
 <parameter name="com.escenic.live-center.content-type.field.twitter-tweet"
 value="basic"/>
 ...
 <panel name="default">
 ...
 <field mime-type="text/plain" type="basic" name="basic">
 <ui:label>Title</ui:label>
 <ui:description>A sample plain text field</ui:description>
 <ui:counter/>
 <ui:visibility>beginner</ui:visibility>

Copyright © 2015-2022 CCI Europe AS Page 32

CUE Live User Guide

 <ui:cue-live>title</ui:cue-live>
 <constraints>
 <maxchars>200</maxchars>
 </constraints>
 </field>
 ...
 </panel>
 ...
</content-type>

4.4.5 Example entry-type Resource

The following example shows a short extract from an entry-type resource, containing just one entry
definition.

<?xml version="1.0"?>
<content-types version="4"
 xmlns="http://xmlns.escenic.com/2008/content-type"
 xmlns:ui="http://xmlns.escenic.com/2008/interface-hints"
 xmlns:livecenter="http://xmlns.escenic.com/2015/live-center"
 >
 <content-type name="football">
 <ui:label>Football</ui:label>
 <ui:description>A sample entry type containing fields of all supported types</
ui:description>
 <ui:title-field>basic</ui:title-field>

 <parameter name="com.escenic.live-center.content-type.field.twitter-tweet"
 value="basic"/>

 <panel name="default">
 <ui:label>Default</ui:label>
 <ui:description>The default set of fields</ui:description>

 <field mime-type="text/plain" type="basic" name="basic">
 <ui:label>Title</ui:label>
 <ui:cue-live>title</ui:cue-live>
 <ui:description>A sample plain text field</ui:description>
 </field>

 <field mime-type="application/xhtml+xml" type="basic" name="xhtml">
 <ui:label>Body</ui:label>
 <ui:cue-live>body</ui:cue-live>
 <ui:description>A sample xhtml field</ui:description>
 </field>

 <field type="boolean" name="boolean">
 <ui:label>Milestone</ui:label>
 <ui:cue-live>milestone</ui:cue-live>
 <ui:description>A sample boolean field</ui:description>
 <cue-live:milestone/>
 </field>

 <field type="enumeration" name="singleChoiceEnumeration">
 <ui:label>Happening</ui:label>
 <ui:cue-live>happening</ui:cue-live>
 <ui:description>A sample single choice enumeration field </ui:description>
 <enumeration value="first">
 <ui:label>Goal</ui:label>

Copyright © 2015-2022 CCI Europe AS Page 33

CUE Live User Guide

 </enumeration>
 <enumeration value="second">
 <ui:label>Corner kick</ui:label>
 </enumeration>
 <enumeration value="third">
 <ui:label>Yellow card</ui:label>
 </enumeration>
 <enumeration value="four">
 <ui:label>Red card</ui:label>
 </enumeration>
 </field>
 </panel>
 <ui:tag-scheme>tag:livelabels@escenic.com,2015</ui:tag-scheme>
 </content-type>
 ...
</content-types>

4.5 Cache Configuration
Caching is one of the most important factors governing CUE Live performance. You are strongly
recommended to use an external cache such as Varnish in front of your Content Store installation
when using CUE Live in production, and to configure caching in accordance with the guidelines in
this section.

4.5.1 Entry Cache

The entry cache is an object cache used to hold recently used entry objects. It is analogous to the
Content Store PresentationArticleCache, which is used to hold recently used content items,
and like the PresentationArticleCache it can be configured to use the distributed memory cache
memcached (see below). If you have configured PresentationArticleCache to use memcached,
then you are recommended to do the same for the entry cache.

All requests to both the editorial and presentation web services are served via the entry cache.

For general information about Content Store object caches, see Tuning The Object Caches. For general
information about installing and configuring memcached, see Distributed Memory Cache.

To configure CUE Live to use memcached, you need to:

1. Open /etc/escenic/engine/common/com/escenic/livecenter/
LocalLiveEntryCache.properties for editing and set the following properties as required:

maxSize
The maximum number of entries that will be held in the cache. Once this limit is reached,
older entries are thrown out of the cache in order to stay below the limit. The default value
is 5000.

$class
If memcached is installed and in use for the PresentationArticleCache at your
installation, then you are recommended to use for CUE Live entries as well. To enable use
of memcached, set this property to neo.util.cache.Memcached.

Copyright © 2015-2022 CCI Europe AS Page 34

http://docs.escenic.com/ece-server-admin-guide/7.15/tuning_the_object_caches.html
http://docs.escenic.com/ece-install-guide/7.15/install_distributed_memory_cache.html

CUE Live User Guide

2. Open /etc/escenic/engine/common/com/escenic/livecenter/
CachingLiveEntryDao.properties for editing (or create the file if necessary) and set the
following property:

cache=./LocalLiveEntryCache

4.5.2 Change Log Caches

Both of the CUE Live web services' change logs (editorial and presentation) are cached in order to
reduce load on the server and database. Clients poll the change logs frequently in order to ensure
that the live blogs are indeed "live" – that they update as soon as any changes are published. With
large numbers of clients, this can result in many thousands of requests per second. Without caching,
every change log request would also result in a database request, and the system would very quickly be
overloaded.

For both web services, caching is performed at two levels:

• Internal caching, with a default lifetime of 250 milliseconds

• External caching, with a default lifetime of 2 seconds for non-empty responses.

• External caching, with a default lifetime of 0 seconds for empty responses.

The external caching depends upon the use of Varnish or some other external cache system: all CUE
Live does is to add a cache header to change log responses. If the response to a change log request is
empty – that is, nothing has changed and there are no new entries to return – then max-age is set to
zero in the cache header by default. This means requests will be handled by the back-end server rather
than the cache server. If there has been a change, and the response therefore has some content, then
max-age is set to 2 seconds by default. This means that for the next 2 seconds (or whatever time you
specify), all requests will be handled by the external cache, which will return the cached response.

For empty/no change responses, the internal cache takes over, caching for a shorter period in order to
maintain acceptably fast response times. If you want to add external caching for empty responses you
can achieve that by overriding the default value.

You can modify the caching parameters for both the internal and external caches, and you can modify
them separately for each web service (editorial and presentation). The specific effects of changes in
cache settings is dependent on many different variables, but in general, increasing cache lifetimes
reduces system load at the cost of increased latency and decreasing cache lifetimes does the opposite:
decreases latency at the cost of increased system load.

To modify the editorial change log cache settings:

1. Copy CacheConfig.properties from the CUE Live installation into your CUE Live webapp
configuration layer (not the common configuration layer):

$ cp engine-installation/plugins/live/misc/siteconfig/webapp/com/escenic/
livecenter/changelog/cache/CacheConfig.properties
 >/etc/escenic/engine/webapp/live-center-editorial/com/escenic/livecenter/
changelog/cache/CacheConfig.properties

2. Open the copied file for editing and set the properties described in section 4.5.2.1 as required:

To modify the presentation change log cache settings:

Copyright © 2015-2022 CCI Europe AS Page 35

CUE Live User Guide

1. Copy CacheConfig.properties from the CUE Live installation into your CUE Live webapp
configuration layer (not the common configuration layer):

$ cp engine-installation/plugins/live/misc/siteconfig/webapp/com/escenic/
livecenter/changelog/cache/CacheConfig.properties
 >/etc/escenic/engine/webapp/live-center-presentation-webservice/com/
escenic/livecenter/changelog/cache/CacheConfig.properties

2. Open the copied file for editing and set the properties described in section 4.5.2.1 as required:

4.5.2.1 CacheConfig.properties

CacheConfig.properties contains the following properties:

cacheHeaderEnabled
This parameter controls external caching by determining whether or not an HTTP cache header
is added to non-empty change log responses. Set to true (the default) to enable caching or
false to disable it. You can usually set this to false for the editorial change log, since the
number or requests from editorial clients is not likely to be very high and external caching is
therefore not required.

maxAge
If cacheHeaderEnabled is set to true, then this property determines the HTTP cache
header's max-age parameter (which sets the external cache's lifetime) for non-empty responses.
It is specified in seconds. The default setting is 2. Increase this value to reduce load on the server
and database, decrease it to reduce latency.

emptyResponseMaxAge
If cacheHeaderEnabled is set to true, then this property determines the HTTP cache
header's max-age parameter (which sets the external cache's lifetime) for empty responses. It
is specified in seconds. The default setting is 0 – in other words, caching is disabled by default
for empty responses. Increase this value to reduce load on the server and database, decrease it to
reduce latency.

accessModifier
If accessModifier is set to private, then this property indicates that all or part of the
response message is intended for a single user and that it therefore must not be cached by a
shared cache such as a proxy server. By default, this property is set to public.

cachingEnabled
This parameter controls internal caching. Set to true (the default) to enable caching, or false
to disable it.

cacheLife
If cachingEnabled is set to true, then this property determines the internal cache's lifetime,
specified in milliseconds. The default setting is 250. Increase this value to reduce load on the
server and database. Increase this value to reduce load on the server and database, decrease it to
reduce latency.

4.6 Third-Party Authentication
CUE Content Store can be set up to use a third party for authentication of users, instead of doing the
user authentication itself. Three third party authenticators are supported – Google Apps, Microsoft
Active Directory and Facebook. If the Content Store is configured to use Google Apps for user
authentication, then Google Apps will also be used by CUE Live for authenticating users. This means

Copyright © 2015-2022 CCI Europe AS Page 36

CUE Live User Guide

that users in organizations that use Google Apps as their standard office suite can also log into Content
Store and CUE Live using their Google log-ins. CUE Live does not, however, currently support
Microsoft Active Directory or Facebook-based authentication.

For a full description of the Content Store's support for Google OAuth authentication and how to
enable it, see the CUE Content Store Server Administration Guide. If Google OAuth authentication
is set up as described in this section, then the CUE Live login form will include an alternative Log in
with Google link alongside the standard Login button.

Copyright © 2015-2022 CCI Europe AS Page 37

http://docs.escenic.com/ece-server-admin-guide/7.15/google_oauth_authentication.html

CUE Live User Guide

5 Embedding External Content

CUE Live provides out-of-the-box support for embedding content from various social media services in
event entries:

• YouTube

• Vimeo

• Instagram (configuration required - see section 5.1)

• Vine

• Twitter

This functionality is based on oEmbed, an open standard for displaying embedded content. In addition
to embedding support for the above services, CUE Live also includes a generic oEmbed handler.
This means users can in fact embed content from any oEmbed provider (a provider is a site that
implements the content provider end of the oEmbed protocol), which includes most social media sites.
There is a list of oEmbed providers here.

The generic oEmbed handler provides somewhat simpler embedding support than the site-specific
handlers. It uses a generic oEmbed HTML template and provides only basic formatting. You can,
however, improve support for specific sites you are interested in by adding your own handlers. You can
do this in two different ways:

• Create a request handler specifically for the site or service you are interested in (see section 5.2). If
you do this, then Content Store will use an HTML template provided by the site itself. This is often
more sophisticated than the generic oEmbed template.

• Create a custom request handler for the site or service you are interested in (see section 5.3). You
can then provide your own HTML template and ensure that the embedded content looks exactly
how you want it to.

CUE Live also supports Open Graph-based embedding, making it possible to embed content from sites
that support the Open Graph protocol but not oEmbed. You can create Open Graph-based request
handlers in more or less the same way as you create oEmbed request handlers. See section 5.4 and
section 5.5 for details).

5.1 Enabling Instagram Embeds
Although a ready-made Instagram configuration is supplied with CUE Live, it will not work out of the
box, because you need to include a Facebook/Instagram access token in one of the configuration files
in order to be granted access to Instagram content. To enable Instagram embeds therefore, you need
to:

1. Obtain a Facebook/Instagram access token. You will find instructions on how to do that here.

2. Open /etc/escenic/engine/common/com/escenic/livecenter/service/proxy/
InstagramRequestHandler.properties for editing and add the following property settings:

OEmbedUrlEndPoint=https://graph.facebook.com/v8.0/instagram_oembed?
access_token=your-access-token&url=

Copyright © 2015-2022 CCI Europe AS Page 38

http://www.oembed.com/
http://oembed.com/#section7
http://ogp.me/
https://developers.facebook.com/docs/facebook-login/access-tokens#apptokens.

CUE Live User Guide

serviceEnabled=true

where your-access-token is the Facebook/Instagram access token you obtained in step 1.

5.2 Creating an oEmbed Request Handler
To create your own site-specific oEmbed request handler:

1. Copy LiveCenterOEmbedRequestHandler.properties from the CUE Live installation
into your webapp configuration layer (not the common configuration layer), and rename
appropriately. For Flickr, for example, you might enter:

$ cp engine-installation/plugins/live/misc/siteconfig/com/escenic/livecenter/
service/proxy/LiveCenterOEmbedRequestHandler.properties \
> /etc/escenic/engine/common/com/escenic/livecenter/service/proxy/
FlickrOEmbedRequestHandler.properties

2. Open the copied file for editing and set the following properties as required:

urlPatterns
A comma-separated list of host names (not URL patterns as listed here) for which this
handler is to be used. For Flickr, for example, you might want to set this property as
follows:

urlPatterns=flickr.com,flic.kr

blockCodeTemplate
An HTML template from which the embedding code for your web pages will be generated.
To include oEmbed property values in your template, enclose the property name in braces
thus:

{property-name}

Alternatively, you can specify the path of a file in which you have saved the template, for
example:

blockCodeTemplate=file:/path/to/block/code/template

The path must be specified as a file system URL (that is, it must have a file: prefix). The
URL must be absolute.

requestHeaders.field-name
These are optional properties that you can add if you want to include any special fields in
the headers of your embed requests. field-name must be the name of an HTTP header field.
To set the User-Agent field to some special value, for example, you would need to specify:

requestHeaders.User-Agent=user-agent-string

3. Register your request handler as described in section 5.6.

5.3 Creating a Custom oEmbed Request Handler
Maybe neither the generic oEmbed HTML template nor the site-specific template provided by the
oEmbed provider meet your requirements. In this case you will need to create a custom request
handler. If you make a custom request handler then you can specify exactly how to request content

Copyright © 2015-2022 CCI Europe AS Page 39

http://oembed.com/#section7

CUE Live User Guide

from the provider and embed the provider's content into your page. Making a custom request handler
requires Java programming skills.

To make a custom request handler:

1. Create a Java class that extends the abstract class
com.escenic.livecenter.service.proxy.api.AbstractOEmbedRequestHandler.

2. Override the following methods:

protected String doOEmbedRequest(final String pContentURL, final
List<Header> pHeaders) throws Exception;

This method requests content from the provider. Writing your own method gives you the
opportunity to deal with any special requirements the provider site might have (such as
supplying credentials).

protected String generateOEmbedCodeFromTemplate(final String
pContentURL, final List<Header> pHeaders)

This method merges the information returned by the provider with the HTML template.
Writing makes it possible to deal with complex requirements that cannot be satisfied by a
simple merge process.

3. Copy OEmbedCustomRequestHandler.properties from the CUE Live installation into your
webapp configuration layer (not the common configuration layer), and rename it appropriately.
For Flickr, for example, you might enter:

$ cp engine-installation/plugins/live/misc/siteconfig/com/escenic/livecenter/
service/proxy/OEmbedCustomRequestHandler.properties
> /etc/escenic/engine/common/com/escenic/livecenter/service/proxy/
FlickrCustomOEmbedHandler.properties

Copyright © 2015-2022 CCI Europe AS Page 40

CUE Live User Guide

4. Open the copied file for editing and set the following properties as required:

urlPatterns
A comma-separated list of host names (not URL patterns as listed here) for which this
handler is to be used. For Flickr, for example, you might want to set this property as
follows:

urlPatterns=flickr.com,flic.kr

OEmbedUrlEndPoint
The URL to which embed requests are to be sent. These URLs are included in the list of
oEmbed providers

blockCodeTemplate
An HTML tem plate from which the embedding code for your web pages will be generated.
To include oEmbed property values in your template, enclose the property name in braces
thus:

{property-name}

Alternatively, you can specify the path of a file in which you have saved the template, for
example:

blockCodeTemplate=file:/path/to/block/code/template

The path must be specified as a file system URL (that is, it must have a file: prefix). The
URL must be absolute.

providerName
The name of the provider for which you are implementing this handler (Flickr, for
example). This property is mandatory if you have specified a blockCodeTemplate,
otherwise it is optional.

5. Register your request handler as described in section 5.6.

To compile your custom oEmbed request handler you need to ensure that the live-center-
core-3.3.3-3.jar and live-center-api-3.3.3-3.jar libraries are in your classpath.

5.4 Creating an Open Graph Request Handler
To create a site-specific Open Graph request handler:

1. Copy OGPRequestHandler.properties from the CUE Live installation into your webapp
configuration layer (not the common configuration layer), and rename it appropriately. For
Flickr, for example, you might enter:

$ cp engine-installation/plugins/live/misc/siteconfig/com/escenic/livecenter/
service/proxy/OGPRequestHandler.properties \
> /etc/escenic/engine/common/com/escenic/livecenter/service/proxy/
FlickrOGPRequestHandler.properties

Copyright © 2015-2022 CCI Europe AS Page 41

http://oembed.com/#section7
http://oembed.com/#section7
http://oembed.com/#section7
http://ogp.me

CUE Live User Guide

2. Open the copied file for editing and set the following properties as required:

urlPatterns
A comma-separated list of host names (not URL patterns as listed here) for which this
handler is to be used. For Flickr, for example, you might want to set this property as
follows:

urlPatterns=flickr.com,flic.kr

blockCodeTemplate
An HTML template from which the embedding code for your web pages will be generated.
The template is generated using Mustache, a popular templating language. At its simplest,
this means you can include Open Graph property values in your template by enclosing the
property name in double braces thus:

{{property-name}}

Mustache also offers more sophisticated functionality such as conditional processing,
allowing you to construct more complex templates.

Instead of specifying a template directly in the blockCodeTemplate property, you can
specify the path of a file in which you have saved the template. For example:

blockCodeTemplate=file:/path/to/block/code/template

The path must be specified as a file system URL (that is, it must have a file: prefix). The
URL must be absolute.

providerName
The name of the provider for which you are implementing this handler (Flickr, for
example). This property is optional: if you don't specify it, then the value returned for
providerNameKey is used instead.

providerNameKey
The name of the Open Graph property that the handler is to use as a provider name. This
property is optional. If you don't specify it (and you haven't specified providerName
either), then the provider name is read from the provider site's og:site_name property.

3. Register your request handler as described in section 5.6.

5.5 Creating a Custom Open Graph Request Handler
If creating a request handler based on OGPRequestHandler does not meet your requirements, you
can create a custom request handler, which will allow you to control exactly how the provider's content
is embedded into your pages. Making a custom request handler requires Java programming skills.

To make a custom request handler:

1. Create a Java class that extends the abstract class
com.escenic.livecenter.service.proxy.api.AbstractOGPRequestHandler.

2. Override the method buildBlockCodeImpl(String pTemplate, Map <String,
String> pOGPValues). This gives you full control over how the Open Graph properties
supplied by the provider site are merged with your HTML template.

3. Compile your class and add it to your web application's classpath.

Copyright © 2015-2022 CCI Europe AS Page 42

http://oembed.com/#section7
http://mustache.github.io/mustache.5.html

CUE Live User Guide

4. Copy OGPRequestHandler.properties from the CUE Live installation into your webapp
configuration layer (not the common configuration layer), and rename it appropriately. For
Flickr, for example, you might enter:

$ cp engine-installation/plugins/live/misc/siteconfig/com/escenic/livecenter/
service/proxy/OGPRequestHandler.properties \
> /etc/escenic/engine/common/com/escenic/livecenter/service/proxy/
FlickrCustomOGPRequestHandler.properties

5. Open the copied file for editing and set the properties as required. See section 5.4 for a
description of the properties.

6. Register your request handler as described in section 5.6.

To compile your custom Open Graph request handler you need to ensure that the live-center-
core-3.3.3-3.jar and live-center-api-3.3.3-3.jar libraries are in your classpath.

5.6 Register Request Handlers
Any request handlers you create must be registered in the RequestHandlerFactory in order to
work. The built-in request handlers are registered as follows:

requestHandler.0003=./TwitterRequestHandler
requestHandler.0004=./YoutubeRequestHandler
requestHandler.0005=./InstagramRequestHandler
requestHandler.0006=./VineRequestHandler
requestHandler.0007=./VimeoRequestHandler

The numbers in the property names determine the order in which provider host names are matched.

To add your own request handlers:

1. Create a RequestHandlerFactory.properties file in your webapp configuration layer as
follows:

$touch /etc/escenic/engine/common/com/escenic/livecenter/service/proxy/
RequestHandlerFactory.properties

2. Open the file for editing and add properties to register your request handlers, using different
number suffixes from the built-in request handlers. For example:

requestHandler.0008=./FlickrRequestHandler
requestHandler.0009=./CNNRequestHandler

3. If you actually want to override one of the supplied request handlers with your own, you can
do so by simply redefining the appropriate property. You can, for example, replace the supplied
TwitterRequestHandler with your own custom implementation by entering something like:

requestHandler.0003=./CustomTwitterRequestHandler

Copyright © 2015-2022 CCI Europe AS Page 43

CUE Live User Guide

6 Auto-Tagging Entries

CUE Live can auto-tag entries based on a variety of criteria:

• The types of CUE content to which an entry contains links (image, video, story, gallery and so on)

• The types of social media items embedded in the entry (Twitter, YouTube, Vine and so on

• Whether or not the entry is sticky

• Whether or not various boolean fields in the entry are checked

Auto-tagging is implemented by means of transaction filters, a standard CUE mechanism for
extending Content Store functionality. A number of ready-made transaction filters to support the
tagging criteria listed above are included with CUE Live, but you can also create your own transaction
filters in order to support other tagging criteria. For general information about transaction filters,
see Transaction Filters. For instructions on how to create your own CUE Live transaction filters, see
chapter 7.

To enable auto-tagging using the supplied transaction filters you need to:

• Create a tag structure as described here. The tag structure must have the scheme (i.e name or
identifier) livelabels@escenic.com,2015. Add tags to the structure by importing the
supplied tag syndication file tags.xml which you will find in engine-installation/plugins/
live/misc/tags. You can edit the tag labels in this file (to translate them, for example) before
importing it, and you can if you wish add tag definitions of your own, but you must not delete any of
the supplied tags or change their term attributes (IDs). Import the file as described here.

• Configure CUE Live to use the auto-tagging transaction filters you are interested in (see section
6.1).

6.1 Configuring the Auto-Tagging Transaction Filters
Three ready-to-use auto-tagging transaction filters are supplied with CUE Live:

StickyAutoLabelingTransactionFilter
This transaction filter automatically tags sticky entries.

BooleanAutoLabelingTransactionFilter
This transaction filter enables automatic tagging of entries in which specified boolean fields are
set. See section 6.1.1 for a description of how to specify the boolean fields to be watched.

EmbedAutoLabelingTransactionFilter
This transaction filter automatically tags entries that contain embedded social media content.
It is pre-configured to recognise and tag embedded content from Twitter, YouTube, Vimeo,
Instagram and Vine. If you have added support for embedding content from other services (see
chapter 5), then you can also configure EmbedAutoLabelingTransactionFilter to tag
content from these services as well. For details, see section 6.1.2.

To enable the transaction filters:

1. Open /etc/escenic/engine/common/com/escenic/livecenter/
LiveEntryDao.properties for editing.

Copyright © 2015-2022 CCI Europe AS Page 44

http://docs.escenic.com/ece-advanced-temp-dev-guide/7.15/transaction_filters.html
http://docs.escenic.com/ece-server-admin-guide/7.15/create_tag_structure.html
http://docs.escenic.com/ece-server-admin-guide/7.15/tagging_structures.html

CUE Live User Guide

2. Add entries for the transaction filters you want to enable as follows:

filter.stickyAutoLabeling=/com/escenic/livecenter/label/filter/
StickyAutoLabelingTransactionFilter
filter.booleanAutoLabeling=/com/escenic/livecenter/label/filter/
BooleanAutoLabelingTransactionFilter
filter.embedAutoLabeling=/com/escenic/livecenter/label/filter/
EmbedAutoLabelingTransactionFilter

3. Save your changes.

6.1.1 Enabling Use of BooleanAutoLabelingTransactionFilter

In order for this filter to work, you need to add auto-label elements to boolean field definitions in
your entry-type resource. An auto-label element looks like this:

<auto-label labelName="tag-name" xmlns:cue-live="http://xmlns.escenic.com/2015/live-
center" />

The auto-label element must be inserted as the child of a boolean field element, and tag-name
must be the term (ID) of the tag you want to use for this field. The element must belong to the
http://xmlns.escenic.com/2015/live-center namespace.

For each field you mark up in this way, you must also add a tag definition to the
livelabels@escenic.com,2015 tag structure. You can do this by either adding a tag definition to
the tags.xml file and re-importing or by adding the term manually.

To enable tagging for a "sticky" field in one of your entry-type definitions, for example, you would
need to add the following to your entry-type resource:

<field type="boolean" name="sticky">
 <ui:label>Sticky</ui:label>
 <auto-label labelName="sticky" xmlns:cue-live="http://xmlns.escenic.com/2015/live-
center"/>
</field>

and then add the following tag to livelabels@escenic.com,2015:

<tag term="sticky">
 <label>Sticky</label>
</tag>

6.1.2 Adding New Social Media Services to
EmbedAutoLabelingTransactionFilter

If you have extended CUE Live to support embedding content from additional social media services
(see chapter 5), then you can also configure EmbedAutoLabelingTransactionFilter to tag
embedded content from these services. To do so:

1. Add a new properties file to your common configuration layer, /etc/
escenic/engine/common/com/escenic/livecenter/label/filter/
EmbedAutoLabelingTransactionFilter.properties, and open it for editing.

Copyright © 2015-2022 CCI Europe AS Page 45

CUE Live User Guide

2. For each service you want to support, add a property like this:

socialLabels.provider-name=tag-name

where:

• provider-name is the provider name specified in your embedding request handler
configuration (see chapter 5)

• tag-name is the term (ID) of the tag you want to use for this service.

3. Add a tag definition for the term to the livelabels@escenic.com,2015 tag structure. You
can do this by either adding a tag definition to the tags.xml file and re-importing or by adding
the term manually.

You could add support for a Flickr embedding extension like one of those described in chapter 5, for
example, by add the following entry to EmbedAutoLabelingTransactionFilter.properties:

socialLabels.flickr=flickr

and then adding the following tag to livelabels@escenic.com,2015:

<tag term="flickr">
 <label>Flickr</label>
</tag>

Copyright © 2015-2022 CCI Europe AS Page 46

CUE Live User Guide

7 CUE Live Transaction Filters

A transaction filter is a user-defined function that gets executed whenever certain operations (or
transactions) are performed, and can thereby modify the outcome of those operations. It is a standard
Content Store mechanism for modifying and extending Content Store behavior, and is described in
detail in the CUE Content Store Advanced Developer Guide.

The CUE Live can also be extended/modified using transaction filters. The main reason you might
want to make use of them would be in order to integrate CUE Live with an external system in some
way: for example to copy all CUE Live events to an external system as they are created.

The CUE Live transactions that can be modified using transaction filters are:

• Object creation

• Object update

• Object deletion

A transaction filter is implemented as a Java class. A transaction filter can, for example:

• Modify a CUE Live entry as it is being saved

• Prevent a CUE Live entry from being deleted unless certain criteria are met

• Perform additional actions when a live entry has been created

7.1 Making A Transaction Filter
For general background information on making transaction filters, see the CUE Content Store
Advanced Developer Guide.

To make a CUE Live transaction filter, create a Java class that extends the abstract class
com.escenic.livecenter.TransactionFilterService. This is a convenience
class containing empty "do nothing" implementations of the methods defined in the
com.escenic.livecenter.TransactionFilter interface:

beforeCreate(pLiveEntry)
Called immediately before a new entry is saved.

beforeUpdate(pLiveEntry)
Called immediately before changes to an existing entry are saved.

beforeDelete(pLiveEntry)
Called immediately before an existing entry is deleted.

afterCreate(pLiveEntry)
Called immediately after a new entry is saved.

afterUpdate(pLiveEntry)
Called immediately before changes to an existing entry are saved.

afterDelete(pLiveEntry)
Called immediately before an existing entry is deleted.

Copyright © 2015-2022 CCI Europe AS Page 47

http://docs.escenic.com/ece-advanced-temp-dev-guide/7.15/transaction_filters.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/7.15/transaction_filters.html
http://docs.escenic.com/ece-advanced-temp-dev-guide/7.15/transaction_filters.html

CUE Live User Guide

isEnabled
Called by the Content Store to determine whether or not the filter is currently enabled.

All you need to do in your class is re-implement the method(s) that you are interested in. In
the before methods you can query the entry and modify it. In the case of beforeCreate and
beforeUpdate, any changes you make are reflected in the saved object.

Before a transaction filter can be used it must be:

• Compiled

• Added to the Content Store's classpath

7.2 Using a Transaction Filter
Create a property file for your transaction filter, for instance configuration-root/com/mycompany/
MyFilter.properties. The file must at least contain a $class entry to identify the class that
implements the filter, for example:

$class=com.mycompany.transactionFilters.MyTransactionFilter

The transaction filters executed by the Content Store are defined in a file called configuration-root/
com/escenic/livecenter/LiveEntryDao.properties. To enable this filter, you would need to
add the following entry to the file:

filter.myfilter=/com/mycompany/transactionfilters/MyTransactionFilter

Copyright © 2015-2022 CCI Europe AS Page 48

CUE Live User Guide

8 Publishing Events

CUE Live events are different from ordinary Content Store content items in two ways:

• Events have a specialized internal structure, as defined in the entry-type resource

• Events are "live" content items that update themselves without any user intervention

These differences are reflected in the presentation layer used to generate the event feeds on published
event pages, which is different from the standard Content Store presentation layer. The basis of the
CUE Live presentation layer is its presentation web service – a REST web service that serves event feed
content as JSON data. For a description of this web service, see section 9.2.

You can include event feeds in your publications in the following ways:

Using the Widget Framework
The Widget Framework (version 3.6 or higher) includes a Live Entries view that you can
use to include event feeds in event page templates. It is very simple to use and completely
hides all details of using the CUE Live presentation web service. If you already use the Widget
Framework, then it is the obvious choice. For details see the Widget Framework documentation.

Using the livecenter-presentation-js component
This Javascript library is available in the CCI Europe Maven repository. By using it in your event
page JSP templates, you can again hide the details of using the CUE Live presentation web
service. For further information on how to use the library, see section 8.1.

Using the presentation web service directly
If neither of the above methods meet your requirements, then you can write your own client-
side code for accessing and displaying the event feed data exposed via the presentation web
service. See section 9.2 for further information.

8.1 livecenter-presentation-js
livecenter-presentation-js is a Javascript library that you can use to manage the display of
event feeds in Escenic publications. It provides all the functionality needed to retrieve event entries
from the CUE Live presentation web service and render the entries as HTML content. It supports the
use of SSE if it is enabled (see section 4.1.1) and otherwise polls the web service to keep feeds up-to-
date. livecenter-presentation-js is used in the demo publication included in the CUE Live
distribution.

livecenter-presentation-js is an AngularJS component and is very straightforward to use. It
includes a custom livecenter-feed element that encapsulates all of an event feed's HTML layout.
Assuming you already have a working CUE Live installation with a correctly defined event content
type and corresponding event type definitions, then all you need to do to use the livecenter-feed
element in your event pages is:

1. Add the following dependencies to your publication's pom.xml file:

<dependency>
 <groupId>com.escenic.plugins.live</groupId>
 <artifactId>live-center-presentation-js</artifactId>
 <version>${project.version}</version>

Copyright © 2015-2022 CCI Europe AS Page 49

http://docs.escenic.com/widget.html
https://angularjs.org

CUE Live User Guide

 <type>war</type>
</dependency>
<dependency>
 <groupId>org.webjars</groupId>
 <artifactId>jquery</artifactId>
 <version>1.10.2</version>
</dependency>
<dependency>
 <groupId>org.webjars</groupId>
 <artifactId>angularjs</artifactId>
 <version>1.2.7</version>
</dependency>
<dependency>
 <groupId>org.webjars</groupId>
 <artifactId>URI.js</artifactId>
 <version>1.12.0</version>
</dependency>

2. Add the following filters to your publication's web.xml file:

<filter>
 <filter-name>/com/escenic/servlet/filter/JarResourceFilter</filter-name>
 <filter-class>com.escenic.servlet.filter.JarResourceFilter</filter-class>
</filter>
<filter-mapping>
 <filter-name>/com/escenic/servlet/filter/JarResourceFilter</filter-name>
 <url-pattern>/webjars/*</url-pattern>
</filter-mapping>

3. Download the Moment.js library and add it to your publication project in the following location:

src/main/webapp/js/lib/moment.min.js

4. Create an AngularJS app that uses the livecenter-presentation-js library to render your
event feeds. A simple example of how to do this would be to add a Javascript file called src/
main/webapp/js/all.js to your project, containing the following code, which creates an
AngularJS app called LiveDemo:

var livedemo;
(function (livedemo) {
 livedemo.LiveDemo = angular.module('LiveDemo', [
 'livecenter.presentation'
]);
})(livedemo || (livedemo = {}));

var livedemo;
(function (livedemo) {
 var EntryList = (function () {
 function EntryList($scope) {
 this.$scope = $scope;
 var config = {
 liveLabelTagSchemeName: "tag:livelabels@escenic.com,2015",
 loadMoreStyle: 'button'
 };
 $scope.config = config;
 }
 EntryList.$inject = ['$scope'];
 return EntryList;
 })();
 livedemo.EntryList = EntryList;
 livedemo.LiveDemo.controller('EntryList', EntryList);

Copyright © 2015-2022 CCI Europe AS Page 50

http://momentjs.com

CUE Live User Guide

})(livedemo || (livedemo = {}));

See chapter 4 for a complete list of configuration options.

If you prefer to use Typescript, then the same app would look like this:

module livedemo {
 export var LiveDemo = angular.module('LiveDemo', [
 'livecenter.presentation'
]);
}

module livedemo {
 import FeedConfig = livecenter.presentation.FeedConfig;
 export class EntryList {
 public static $inject = ['$scope'];

 constructor(private $scope:any) {
 var config:FeedConfig = {
 liveLabelTagSchemeName: "tag:livelabels@escenic.com,2015",
 loadMoreStyle: 'button'
 };
 $scope.config = config;
 }
 }
 LiveDemo.controller('EntryList', EntryList);
}

5. Create a JSP file for the event feed template (/src/main/webapp/template/article-
template/livefeed.jsp, for example) and add the following code:

<%@ page language="java" %>

<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<%@ taglib prefix="fmt" uri="http://java.sun.com/jsp/jstl/fmt" %>

<c:set var="liveEventStatus"
 value="${requestScope.article.fields.liveEventStatus.value}"/>
<c:if test="${empty requestScope.article.fields.liveEventStatus.value}">
 <c:set var="liveEventStatus" value="false"/>
</c:if>

<div data-ng-controller="EntryList">
 <!-- The component to render live-center feeds -->
 <livecenter-feed
 eventUrl="${requestScope.article.fields.livecenter.value}"
 eventStatus="${liveEventStatus}"
 contextPath="/demo-temp-dev"
 config="config">
 </livecenter-feed>
</div>

<!-- javascripts supplied from webjars. We need to add a filter in web.xml to
 support /webjars urls -->
<c:url var="angular" value="/webjars/angularjs/1.2.7/angular.min.js"
 scope="request"/>
<c:url var="angular_sanitize" value="/webjars/angularjs/1.2.7/angular-
sanitize.min.js" scope="request"/>
<c:url var="uri_js" value="/webjars/URI.js/1.12.0/URI.min.js" scope="request"/>
<c:url var="jquery" value="/webjars/jquery/1.10.2/jquery.min.js" scope="request"/>
<!-- javascripts we have packaged inside our project -->

Copyright © 2015-2022 CCI Europe AS Page 51

CUE Live User Guide

<c:url var="moment" value="/js/lib/moment.min.js" scope="request"/>
<c:url var="all_js" value="/js/all.js" scope="request"/>
<!-- javascript and style we use from live-center-presentation-js -->
<c:url var="feed_js" value="/live-center-presentation-js/js/all.js"
 scope="request"/>
<c:url var="presentation_js_css" value="/live-center-presentation-js/css/
style.css" scope="request"/>
<link href="${presentation_js_css}" rel="stylesheet">

<script src="${angular}"></script>
<script src="${angular_sanitize}"></script>
<script src="${uri_js}"></script>
<script src="${moment}"></script>
<script src="${feed_js}"></script>
<script src="${all_js}"></script>
<script src="${jquery}"></script>

6. Declare your AngularJS app (LiveDemo in this case) by adding a data-ng-app attribute to one
of your live feed template's ancestor elements. You can do this either by wrapping the template in
a div element:

<div data-ng-app="LiveDemo">
 ...
</div>

or by simply adding data-ng-app="LiveDemo" to an existing ancestor element (the html
element in /src/main/webapp/template/article-template/header.jsp, for example.

7. Build and deploy your publication.

8.1.1 Configuration

livecenter-presentation-js has a number of configuration options that you can set in your
AngularJS app. The example app in section 8.1 shows just one option being set:

var config = {
 liveLabelTagSchemeName: "tag:livelabels@escenic.com,2015",
 loadMoreStyle: 'button'
};

but a number of other options are available:

timeStyle?: string; // {'timestamp', 'relative'}
timestampFormat?: string;
showTags?: boolean;
liveLabelTagSchemeName?: string;
showLiveLabels?: boolean;
imageRepresentationName?: string;
//pollingInterval in millisecond
pollingInterval?: number;
//Stop polling after X minutes inactivity
stopPollingAfterInactive?: number;
changelogSize?: number;
showAuthor?: boolean;
showCreator?: boolean;
showAvatar?: boolean;
loadMoreStyle?: string; // {'scroll', 'button'}

Copyright © 2015-2022 CCI Europe AS Page 52

CUE Live User Guide

9 Using The CUE Live Web Services

CUE Live provides two REST API web services:

• An editorial web service with full read-write access to entries. This web service can be used
to implement custom user interfaces that meet requirements not satisfied by the CUE Live
webapp, or for integrating CUE Live with third-party systems. Access to this web service requires
authentication as for the Content Store web service.

• A presentation web service with more limited access to entries. This web service is intended to
fulfil the same purpose as the Java bean-based JSP presentation layer used by the Content Store
and most other Content Store plug-ins, while allowing you to use whatever languages and UI
technologies you choose to build your web pages. A similar presentation web service is planned
for future versions of the Content Store. The presentation web service is effectively a subset of the
editorial web service. No authentication is required to access this web service.

9.1 The Editorial Web Service
The CUE Live editorial web service is very similar to the Content Store web service, with the main
difference being that instead of returning content in the form of XML Atom feeds, it returns JSON
data. If you are familiar with the Content Store web service, then you will find the CUE Live web
service easy to use. If you haven't used the Content Store web service before, then you should probably
start by reading at least the introduction of the CUE Content Store Integration Guide.

The editorial web service provides a standard REST HTTP API in which all operations are performed
by sending GET, POST, PUT or DELETE requests to various URLs. The default name of the web service
is live-center-editorial.

Unlike the Content Store web service, the CUE Live editorial web service has no global entry point or
"start" URL. Before you do anything with the web service, therefore, you usually need to obtain the ID
of an Event content item (either from the Content Store presentation layer or the Content Store web
service). Once you have an Event id you can request information about it by submitting a GET request
like this to the web service:

http://host-ip-address/live-center-editorial/event/event-id

where host-ip-address is your CUE Live host name or IP address and event-id is the ID of the event
you are interested in. Authentication is required, so if you submitted the request using curl, then the
whole command for an event with the id 24 would look like this:

curl -u user:password -X GET http://host-ip-address/live-center-editorial/event/24

CUE Live then returns a JSON structure that looks something like this:

{
 "id": 24,
 "title": "Liverpool - Manchester United",
 "entries": "http://host-ip-address/live-center-editorial/event/24/entries",
 "publishedEntries": "http://host-ip-address/live-center-editorial/event/24/
entries?status=published"

Copyright © 2015-2022 CCI Europe AS Page 53

http://docs.escenic.com/ece-integration-guide/7.15/

CUE Live User Guide

 "unPublishedEntries": "http://host-ip-address/live-center-editorial/event/24/
entries?status=unpublished",
 "self": "http://host-ip-address/live-center-editorial/event/24",
 "changelog": "http://host-ip-address/live-center-editorial/changelog/event/24",
 "entryModel": "http://host-ip-address/live-center-editorial/model/24/football",
 "values": {
 "title": "Liverpool - Manchester United",
 "body": "<p>Match: 23. January 2015</p>"
 },
 "subscriptions": [
 {
 "link": "http://host-ip-address/live-center-editorial/event/24/
subscription/0",
 "source": "twitter"
 },
 {
 "link": "http://host-ip-address/live-center-editorial/event/24/
subscription/1",
 "source": "twitter"
 }
]
}

The actual content of this document, as in all the JSON structures returned by the web service, is
in the payload field. In this case payload contains the field values of the Event content item - a
title and a description. The rest of the document mostly consists of links that you can follow to obtain
further information. Submitting a new GET request to the entries URL, for example:

curl -u user:password -X GET http://host-ip-address/live-center-editorial/event/24/
entries

This returns a JSON document containing all the event's entries plus related information:

{
 "entries":[
 {
 "author":{
 "value": "A.N. Other",
 "origin": "http://host-ip-address/webservice/escenic/person/7"
 },
 "creator":{
 "value": "livedemo Administrator",
 "origin": "http://host-ip-address/webservice/escenic/person/1"
 },
 "creationDate": "2015-02-13T12:20:24.000+0000",
 "eTag": "0d1f1e1f-6bf2-46fd-8de4-c1de0c015f0a",
 "event": "http://host-ip-address/live-center-editorial/event/24",
 "lastModifiedDate": "2015-02-13T12:36:38.000+0000",
 "model": "http://host-ip-address/live-center-editorial/model/24/football",
 "parent": "http://host-ip-address/live-center-editorial/entry/251",
 "values":{
 "basic": "Test entry"
 },
 "publishDate": "2015-02-13T12:20:24.000+0000",
 "self": "http://host-ip-address/live-center-editorial/entry/283",
 "state": "published",
 "tags":[]
 },
 ...(more entries)...

Copyright © 2015-2022 CCI Europe AS Page 54

CUE Live User Guide

]
}

Like many REST APIs, the CUE Live API is more or less self-documenting. It consists entirely of URLs,
and the fields in the returned JSON documents have reasonably self-explanatory names. A good way
of learning the API is to install a REST API browser extension such as DHC for Chrome, and simply
explore it.

Usage of the HTTP commands follows standard rest conventions:

• Send GET to a URL to retrieve a resource (as in the examples above)

• Send PUT to a URL to modify a resource

• Send POST to a URL to create a new resource

• Send DELETE to a URL to delete a resource

9.1.1 Retrieving an Entry

To retrieve a single Entry, rather than a list of all the Entries in an Event, you send GET to the Entry's
self URL:

curl -u user:password -X GET http://host-ip-address/live-center-editorial/entry/283

This returns a single Entry, rather than an array of entries:

{
 "author":{
 "value": "A.N. Other",
 "origin": "http://host-ip-address/webservice/escenic/person/7"
 },
 "creator":{
 "value": "livedemo Administrator",
 "origin": "http://host-ip-address/webservice/escenic/person/1"
 },
 "creationDate": "2015-02-13T12:20:24.000+0000",
 "eTag": "0d1f1e1f-6bf2-46fd-8de4-c1de0c015f0a",
 "event": "http://host-ip-address/live-center-editorial/event/24",
 "lastModifiedDate": "2015-02-13T12:36:38.000+0000",
 "model": "http://host-ip-address/live-center-editorial/model/24/football",
 "parent": "http://host-ip-address/live-center-editorial/entry/251",
 "values":{
 "basic": "Test entry"
 },
 "publishDate": "2015-02-13T12:20:24.000+0000",
 "self": "http://host-ip-address/live-center-editorial/entry/283",
 "state": "published",
 "tags":[]
}

9.1.2 Changing an Entry

To change an Entry you retrieve the resource as described in section 9.1.1, make whatever change
you require and send the modified document back to the same URL as a PUT request. Using curl,
for example, you would save the modified JSON data in a file (say edited-entry.json) and then
resubmit it like this:

Copyright © 2015-2022 CCI Europe AS Page 55

CUE Live User Guide

curl --include -u user:password -X PUT -H 'If-Match: "0d1f1e1f-6bf2-46fd-8de4-
c1de0c015f0a"' \
> -H 'Content-Type: application/json' http://host-ip-address/live-center-editorial/
entry/283 \
> --upload-file edited-entry.json

Note the two headers that are included with the request:

Content-Type: application/json
You must always specify the MIME type of the data you are submitting.

If-Match: "0d1f1e1f-6bf2-46fd-8de4-c1de0c015f0a"
The If-Match header is used by CUE Live to manage concurrency. You must always return the
exact value supplied in the eTag field of the Entry you are modifying, including the quotes
surrounding the value. CUE Live uses the If-Match header is used in exactly the same as
the Content Store. For a detailed explanation of what it is used for and how it works, see http://
docs.escenic.com/ece-integration-guide/7.15/optimistic_concurrency.html.

9.1.3 Creating an Entry

To create a new Entry you create a correctly structured JSON data set and send it to the entries list
URL of the Event you want to add it to. The entry must be sent as a POST request. Many fields can be
omitted from the data structure you submit, since they contain system generated values. All you really
need to include to create an entry, is the values field:

{
 "values":{
 "basic": "This is a new entry."
 }
}

Using curl you would save the modified JSON data in a file (say new-entry.json) and submit it
like this:

curl --include -u user:password -X POST -H "Content-Type: application/json" \
> http://host-ip-address/live-center-editorial/event/24/entries --upload-file new.json

You need to include a Content-Type header with the request, specifying the data MIME type
(application/json).

The JSON format requires you to escape any quote marks in field values using a preceding
backslash (\). This is commonly required when inserting HTML into rich text fields, for example:

{
 "values":{
 "xhtml": "<p class=\"myclass\">Hello world</p>"
 }
}

Embedding Foreign Content

CUE Live allows foreign content from social media sites such as Twitter and YouTube to be embedded
in entries' rich text fields (see section 2.2.2.2). To do this when editing a JSON values property, you
must insert the foreign content's URL as an XHTML anchor (a) element, and include two special CSS
classes:

Copyright © 2015-2022 CCI Europe AS Page 56

http://docs.escenic.com/ece-integration-guide/7.15/optimistic_concurrency.html
http://docs.escenic.com/ece-integration-guide/7.15/optimistic_concurrency.html

CUE Live User Guide

esc-social-embed
This class indicates that the link is to be rendered as embedded content rather than an ordinary
link.

esc-tag-providerName
Where providerName is one of Youtube, Twitter, Vimeo, Instagram or Vine. This
identifies the source of the foreign content. No other sources of foreign content are currently
supported.

The following example shows a values property containing an embedded YouTube video:

"values":{
 "xhtml": "<p><a class=\"esc-social-embed esc-tag-Youtube\" href=\"https://
www.youtube.com/watch?v=yVwAodrjZMY"></p>"
 }

9.1.4 Deleting an Entry

To delete an Entry, you send a DELETE request to the Entry's self URL:

curl -u user:password -X DELETE http://host-ip-address/live-center-editorial/entry/283

No additional headers are required to delete an Entry.

9.2 The Presentation Web Service
The presentation web service provides a standard REST HTTP API in which all operations are
performed by sending GET requests to various URLs. Since the presentation web service is read-
only, no other request types are allowed. The default name of the web service is live-center-
presentation-webservice.

Like the editorial web service, the CUE Live presentation web service has no global entry point or
"start" URL. You will usually access it by obtaining a URL from the Content Store's (JSP) presentation
layer as follows:

${article.fields.livecenter.value}

Assuming ${article} is an Event content item, then this will return a URL like this:

http://host-ip-address/live-center-presentation-webservice/event/event-id/entries

where:

• host-ip-address is the IP address and port number of the Content Store

• event-id is the content item ID of the event

Submitting a GET request to such a URL returns a JSON structure containing the event's top 10
entries, something like this:

{
 "entries": [
 {
 "author":
 {

Copyright © 2015-2022 CCI Europe AS Page 57

CUE Live User Guide

 "value": "livedemo Administrator",
 "origin": "http://host-ip-address/webservice/escenic/person/1"
 },
 "creator":
 {
 "value": "livedemo Administrator",
 "origin": "http://host-ip-address/webservice/escenic/person/1"
 },
 "creationDate": "2015-05-14T12:23:18.000+0000",
 "eTag": "ccd54879-ac58-4e86-bdf2-3f00901e5e17",
 "lastModifiedDate": "2015-05-14T12:23:18.000+0000",
 "publishDate": "2015-05-14T12:23:18.000+0000",
 "payload": [
 {
 "name": "basic",
 "value": "This is the title"
 }
],
 "state": "published",
 "tags": [],
 "sticky": false
 }
],
 ...(up to 9 more entries)...
 "self": "http://host-ip-address/live-center-presentation-webservice/event/3/entries?
count=10",
 "after": "http://host-ip-address/live-center-presentation-webservice/event/3/
entries/after/2015-05-14T12:23:18.000+0000?count=10",
 "before": "http://host-ip-address/live-center-presentation-webservice/event/3/
entries/before/2015-05-14T12:23:18.000+0000?count=10",
 "changelog": "http://host-ip-address/live-center-presentation-webservice/changelog/
event/3"
 "sseURI": "http://host-ip-address/live-center-presentation-webservice/
changelogSSE/3"
}

The returned structure contains the following fields:

entries
An array of entry structures. For a event with 10 or fewer entries, all entries are returned.
If there are more than 10 entries, then only the top 10 entries are returned. The entries are
sorted in the order they should appear on the event page - with sticky entries at the top and then
ordinary entries sorted by publishDate (or creationDate for unpublished entries), most
recent first. For a description of the fields in the entries, see section 9.2.1.

Entries are returned 10 at a time by default. You can, however, change this page length — see
section 4.1.5.2 for details.

self
This structure's presentation web service URL.

after
The presentation web service URL for the 10 entries above the current set of entries: that is,
entries that should appear above the current set on the event page. If you want to specify a
different maximum number of entries to retrieve, just change the URL's count parameter.

You can use this URL for implementing paging functionality (displaying more entries when
the user reaches the bottom of the page, for example). To poll for new entries or changes use
the changelog URL (see section 9.2.2.2).

Copyright © 2015-2022 CCI Europe AS Page 58

CUE Live User Guide

before
The presentation web service URL for the 10 entries below the current set of entries: that is,
entries that should appear below the current set on the event page. If you want to specify a
different maximum number of entries to retrieve, just change the URL's count parameter.

changelog
The presentation web service URL of this event's change log. See section 9.2.2.2 for details.

sseURI
The presentation web service URL of this event's server-sent events (SSE) connection. See
section 9.2.2.1 for details.

9.2.1 Entry Fields

Each entry in the entries array contains the following fields.

creator
The name and CUE web service URL of the Content Store user who created the entry.

author
The name and CUE web service URL of the Content Store user to whom authorship of the entry
is attributed. By default this is the same user as creator but can be different if a different
author has been explicitly selected in CUE Live.

creationDate
The date the entry was created.

eTag
A system generated value. Used for client-side caching.

lastModifiedDate
The date the entry was last modified.

publishDate
The date the entry was published.

payload
The actual content of the entry, an array of fields. In the example shown in section 9.2, the entry
consists of only one basic (plain text) field. An entry more often contains several fields, at least
one of which is a rich text field containing XHTML markup like this:

{
 "name": "body",
 "value": "<p>Here is some XHTML text.</p>"
}

state
The state of the entry. Currently this may either be "published" or "deleted".

tags
An array of tags. The example shown in section 9.2 has no tags, so the array is empty. An array
with content looks like this:

"tags": [
 {
 "value": "Twitter",
 "origin": "http://host-ip-address/webservice/escenic/classification/tag/
tag:livelabels@escenic.org,2015:twitter"
 }
]

Copyright © 2015-2022 CCI Europe AS Page 59

CUE Live User Guide

Each tag consists of the tag's label and the tag's CUE web service URL.

sticky
Whether or not the entry is sticky.

9.2.2 Keeping the Event Page Up-to-Date

Once you have retrieved the initial entries to be displayed, you need to keep the event page up-to-date.
This can be done in one of two ways:

Using Server-sent Events (SSE)
Server-sent events is a standard technology introduced with HTML 5 that makes it possible to
keep a web page updated with dynamic content without resorting to polling. Instead, a client can
open a persistent link to the server and receive notifications of changes via that link whenever
they occur. This is the recommended method of keeping event pages updated. For details, see
section 9.2.2.1.

Polling the event change log
This is the original method used to keep CUE Live events up-to-date. It has scalability issues,
however, and is no longer the recommended approach - certainly not for blogs that can expect
large numbers of visitors. For details see section 9.2.2.2.

9.2.2.1 Using Server-sent Events

To access the change log via SSE, first send a GET request to the changelog URL. From this you
can obtain a new URL, the change log's previous link. Without SSE, you would need to poll this
previous link at intervals in order to get details of new entries. Using SSE, polling is not required.
Instead, you now send a GET request to the sseURI URL. This sets up a persistent link over which the
Content Store can send notifications.

In the browser, an EventSource object can be used to receive server-sent event notifications.
On creation, the object is connected to the source of notifications (in our case, a particular live
blog's SSE link, http://host-ip-address/live-center-presentation-webservice/
changelogSSE/event-id). It has an onmessage event that is fired every time a notification
is received. So all you need to do is write an event function that responds appropriately to the
notifications received. For example:

var source = new EventSource("http://host-ip-address/live-center-presentation-
webservice/changelogSSE/event-id");
source.onmessage = function(event) {
 // handle the SSE notification here:
};

The event data does not directly contain any details of what change has occurred - the notification
simply indicates that a change has been added to the change log. Your event code can then retrieve
details of the change by sending a GET request to the change log's previous URL. The GET request
sent to the change log previous URL is identical to an ordinary polling request, except that in this
case, the response is guaranteed to contain some changes.

Server-sent events reduce the load of responding to large numbers of polling requests, but at the
price of requiring the Content Store to hold large numbers of persistent connections open. This
can quickly become a problem, since Tomcat cannot handle more than 200 simultaneous client
connections. CCI Europe therefore now ships an SSE Proxy with the Content Store. An SSE Proxy
can handle up to 28,000 simultaneous client connections on behalf of the Content Store. It is

Copyright © 2015-2022 CCI Europe AS Page 60

CUE Live User Guide

possible to run many such proxies in parallel, each of which only require one connection to the
Content Store, effectively removing any limitation on the total number of SSE connections that it is
possible to handle.

For details of how to set up and run one or more SSE proxies for use with the Content Store, see the
SSE Proxy documentation.

9.2.2.2 Polling The Event Change Log

To access the event change log by polling, send a request to the changelog URL. This returns a JSON
structure like this:

{
 "next": "http://host-ip-address/live-center-presentation-webservice/changelog/
event/18/before/458?count=10",
 "previous": "http://host-ip-address/live-center-presentation-webservice/changelog/
event/18/after/472?count=10",
 "self": "http://host-ip-address/live-center-presentation-webservice/changelog/
event/18/before/473?count=10",
 "entries": [...]
}

The entries will contain entry structures for any entries that have changed plus any new entries
created since your last request. You can use this information to update your page. You should then
send a request to the change log structure's previous URL, and it will return a new change log
structure containing any newer changes.

By polling the previous URL at regular intervals you can keep your page up-to-date with all changes
made to the event.

The change log sorts entries by lastModifiedDate, not by sticky and
publishedDate/creationDate. That is why you need to use the changelog URL to keep your
page up-to-date, and not the after URL.

The event change log functions in exactly the same way as the Content Store web service's change log.
If you want a more detailed description of how it works, see Change Logs.

Currently, the CUE Live change log does not take account of sticky entries correctly. If an event
contains 2 sticky entries and you request 5 entries, then a total of 7 entries are returned.

9.2.3 Retrieving Embedded Content

The CUE Live web service includes a proxy service for formatting embedded content. The proxy URL
is:

http://host-ip-address/live-center-presentation-webservice/proxy/

The proxy service, merges the embedded content URL with the appropriate HTML template and
returns the resulting HTML snippet so all you have to do is insert it at the correct location.

A rich text field containing an embedded tweet looks something like this:

{
 "name": "xhtml",
 "value": "<p>Look, a tweet!</p>

Copyright © 2015-2022 CCI Europe AS Page 61

http://docs.escenic.com/sse-proxy.html
http://docs.escenic.com/ece-integration-guide/7.15/the_escenic_change_log.html

CUE Live User Guide

 <p>
 <a xmlns=\"http://www.w3.org/1999/xhtml\"
 href=\"https://twitter.com/threadless/status/606078523548266496\"
 class=\"esc-social-embed esc-tag-Twitter\">

 </p>"
}

To display the tweet, all you need to do is to pass its URL on to the proxy service like this:

http://host-ip-address/live-center-presentation-webservice/proxy/?url=https://
twitter.com/threadless/status/606078523548266496

The proxy service will then respond with a JSON structure containing the merged HTML:

{
 "html":"<blockquote class="twitter-tweet" lang="en">

 </blockquote>
 <script type="text/javascript" src="http://platform.twitter.com/
widgets.js"></script>",
 "provider_name":"Twitter"
}

You can then just replace the original <a/> element with the content of the xhtml field.

9.2.4 Retrieving Selected Entries

The CUE Live provides a web service for retrieving selected entries from an event. Currently, it allows
you to select entries by tag. The web service is located at:

http://host-ip-address/live-center-presentation-webservice/event/eventId/search

where:

• host-ip-address is the IP address and port number of the Content Store

• event-id is the content item ID of the event from which you want to retrieve events

To retrieve all entries tagged with a particular tag, append a tagId parameter to the URL, specifying
the tag term. For example:

http://host-ip-address/live-center-presentation-webservice/event/265/search/?
tagId=tag:livelabels@escenic.com,2015:sticky

The web service will then return a JSON structure containing any entries that are tagged with the
specified tag. The entries are returned 10 at a time in exactly the same way as ordinary entry requests
(see section 9.2).

Note that you must specify a tag term in the request URL, not a tag label. For information on how to
find tag terms, see Search For a Tag.

You can include more than one tag term in the request URL by repeating the tagId parameter. For
example:

http://host-ip-address/live-center-presentation-webservice/event/265/search/?
tagId=tag:livelabels@escenic.com,2015:sticky&tagId=tag:livelabels@escenic.com,2015:twitter

Copyright © 2015-2022 CCI Europe AS Page 62

http://docs.escenic.com/ece-integration-guide/7.15/search_for_tag.html

CUE Live User Guide

The returned JSON structure will then contain any entries tagged with one or more of the specified
tags.

Copyright © 2015-2022 CCI Europe AS Page 63

